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Abstract

This paper deals with performance measurement of �nancial struc-
tured products. For this purpose, we introduce the SharpeOmega ratio,
based on put as downside risk measure. This allows to take account of
the asymmetry of the return probability distribution. We provide gen-
eral results about the optimization of some standard structured portfolios
with respect to the SharpeOmega ratio. We determine in particular the
optimal combination of risk free, stock and call/put instruments with re-
spect to this performance measure. We show that, contrary to Sharpe
ratio maximization (Goetzmann et al., 2002), the payo¤ of the optimal
structured portfolio is not necessarily increasing and concave. We also
discuss about the interest of the asset management industry to reward
high Sharpe Omega ratios.

Key words: Structured portfolio, Performance measure, SharpeOmega
ratio.

JEL Classi�cation: C 61, G 11.

1 Introduction

Structured investments have been initially introduced by �rms that searched for
cheaper issue debt. For instance, convertible bonds can be sold instead of stan-
dard bonds to allow the conversion to equity. Structured products have been
further extended to combinations of derivatives and �nancial instruments in or-
der to provide funds with better risk/return pro�les that are not always directly
available on the �nancial market. They have became rather popular in the US
in the 1980s and further introduced in Europe since the mid-1990s. These prod-
ucts are introduced to provide investors with highly targeted investments related
to their performance objectives and risk pro�les. They are created to satisfy
speci�c needs that cannot be provided by standardized �nancial instruments,
usually available in the �nancial markets. One of their main characteristics
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is �xed maturity. They are based on combinations of �nancial assets such as
bonds, shares or indices, commodities,...and derivatives. The derivative compo-
nent is often an option (Put or Call) chosen to provide some speci�c portfolio
pro�le at maturity, while the other component is generally a note that delivers
interest payments. Some structured products are linked to portfolio insurance.
They guarantee a predetermined amount at maturity (usually a �xed percentage
of the initial investment) whatever market �uctuations.

Structured products allow complex positions in options without the need for
access to option market. There exists a large variety of such products, since a
large number of underlyings and options can be introduced. The main classes are
asset-linked notes and equity-linked notes and deposits, where the �nancial asset
may be interest rate, equity, hybrid product, credit product, FX and commod-
ity...(see Das (2000) for classi�cations of structured products). These products
can incorporate plain-vanilla options �corridor, turbo...) or exotic options such
as barrier and rainbow products. The value of options, swaps...is determined
from underlying asset prices. However, some mispricing may occur. Chen and
Kensinger (1990) have examined Market-Index-Certi�cates of Deposit (MICD)
in the US market, during a period of two months in 1988 and 1989. Using a
comparison of the implied volatility of the S&P 500 option with the implied
volatility of the MICDs option components, they have shown that signi�cant
di¤erences exist between theoretical and market values. Chen and Sears (1990)
also illustrate this feature for the S&P 500 Index Note (SPIN). Wasserfallen and
Schenk (1996) has been led to the same conclusion when examining the pricing
of capital-protected products issued in 1991/1992 in the Swiss market. Wilkens
et al. (2003) have analyzed the German market through a large data set of
classic structured products, traded in November 2001. They �nd "evidence of
an overpricing of structured products, which can mostly be interpreted as in fa-
vor of the issuing institution." Stoimenov and Wilkens (2005) have also studied
the German structured products, including in particular implicit exotic option
components such as barrier and rainbow options. Their results suggest that "all
types of equity-linked structured products are, on average, priced above their
theoretical values and thus favor the issuing institution."

Main potential bene�ts of structured products are guarantees according to
the kind of structured product and enhanced returns depending on portfolio
pro�les. The search for �optimal�structured products has been previously ex-
amined both from the insurance portfolio and the �nancial optimal positioning
point of views. Leland and Rubinstein (1976) have introduced the option based
portfolio insurance (OBPI). It consists of a portfolio invested in a risky under-
lying asset S (usually a �nancial index such as the S&P) covered by a listed
put written on it. Whatever the value of S at maturity T , the portfolio value
will be always higher than the strike K of the put. At maturity, the investor
can limit downside risk while participating in upside markets. Their optimal
pro�les can be determined from the optimal positioning problem which has been
addressed in the partial equilibrium framework by Brennan and Solanki (1981)
and by Leland (1980). The portfolio value is a function of the benchmark, in
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a one period set up. Then, the optimal payo¤ which maximizes the expected
utility is determined. It depends crucially on the risk aversion of the investor.
Following this approach, Carr and Madan (2001) introduce markets in which
exist out-of-the-money European puts and calls of all strikes. This assump-
tion allows to examine the optimal positioning in a complete market and is the
counterpart of the assumption of continuous trading. This approximation is
justi�ed when there is a large number of option strikes (eg. for the S&P500,
for example). More speci�c insurance constraints can be considered and utility
maximization can be solved (see e.g. Bertrand et al. (2001), El Karoui et al.
(2005) and Prigent (2006) for quite general insurance constraints). The opti-
mal positioning can be also examined within rank dependent expected utilities
(RDEU) as in Jin and Zhou (2008) for the dynamic case and Prigent (2008) for
the static case. In this framework, the choice of the threshold can be further
examined (see P�¤elmann, 2005; P�¤elmann and Roger, 2008; Roger, 2008).
Hens and Riger (2008) examine various features of structured products from
the customer�s perspective.

But structured products may also be illiquid, may include credit risk and
be not daily priced. Additionally, they are often quite complex and their per-
formance and risk evaluations are note easy to handle. Payo¤s of structured
products are non linear with respect to the underlying asset. This feature im-
plies asymmetric return distributions. Their risks are similar to those of options
and their return distributions are far from being lognormal. Therefore, we must
be careful when evaluating their risks and performances. We must search for
new performance measures, alternative to standard Sharpe ratio or Jensen al-
pha, to overcome shortcomings of performance measures based only on the �rst
moments of the return distributions. Such performance measures are usually
de�ned as reward-to-risk measures but, contrary for example to the Sharpe ra-
tio, the risk measure is downside and aims to take the whole return distribution
into account (see e.g. Pedersen and Satchell, 1998; Artzner et al., 1999; Szegö,
2002). Keating and Shadwick (2002) have introduced such kind of risk measure
to de�ne a new performance measure based on a gain-loss approach. This one
is called the Omega measure. It takes account of investor loss aversion, which
is in line with results of Tversky and Kahneman (1992). It has been applied in
�nance to examine or instance equities or hedge funds. The Omega measure is
equal to the ratio of the expected gains and the expected losses, de�ned with re-
spect to a given threshold. As noted by Kazemi et al. (2004), it corresponds to
the ratio of the expectations of a call option divided by a put option written on
the underlying asset. The strike price is the given threshold. The SharpeOmega
measure, introduced by Kazemi et al. (2004), is equal to the Omega measure mi-
nus 1. Such measure has been previously introduced to examine performance of
some structured products, such as those related to portfolio insurance. Bertrand
and Prigent (2008) use the Omega performance measure to compare standard
portfolio insurance strategies. They show that the CPPI method provides better
results than the OBPI one for "rational" thresholds. Non normal distributions
can also be proposed to model structured product returns, for example Johnson
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distributions. In this framework, Perez (2004) have used the Omega approach
to test adequacy of these distributions. Passow (2005) provide explicit represen-
tations for Omega and SharpeOmega with all four Johnson distributions. Using
a Hedge fund index as back-testing, he shows that Johnson-Omega provides
signi�cantly higher returns. Other researchers have focused on the problem of
portfolio allocations in order to maximize Omega (see Avouyi-Dovi et al. 2004).
Empirical results show that this measure is more stable than other risk measures
such as RoCVaR , RoVaR and Sharpe (see Hentati et al. 2010) but it has many
local solutions because of the non-convexity of Omega function. The resolution
of the global optimum is proposed by Bartholomew-Biggs et al. (2009) by using
a NAG library implementation of the Huyer & Neumaier MCS method. Based
on another approach, Hentati and Prigent (2010) introduce Gaussian mixtures
to model empirical distributions of �nancial assets and solve the portfolio op-
timization problem in a static way, taking account of discrete time portfolio
rebalancing.

In this paper, we propose to analyze structured products by using the
SharpeOmega ratio. It is well known that the Sharpe ratio can be manipu-
lated by option-like strategies (see Henriksson and Merton, 1981; Dybvig and
Ingersoll, 1982). In this context, Goetzmann et al. (2002) determine portfolio
strategies which maximize the Sharpe ratio. They derive general conditions to
achieve the maximum. They prove that appropriate combinations of puts and
calls lead to signi�cantly higher Sharpe ratios than "linear" portfolios. Our
approach is quite similar, except that we use the SharpeOmega ratio instead
of the Sharpe ratio itself. For this purpose, we consider a portfolio manager
who invests in three assets: a free risk market account, denoted by B, a risky
asset (equity), denoted by S and Call/Put written on this equity. Our aim is to
maximize and analyze SharpeOmega ratio under given constraints. We begin
by determining the necessary conditions to determine precisely the downside
risk component. Subsequently, we study the minimization problem of the Put
under the constraint of �xed expectation.

The paper is organized as follows. Section 2 recalls de�nitions and main
properties of the Omega and Sharpe Omega measures. Section 3 deals with
various portfolio optimizations with respect to these ratios. We prove that,
unlike the result of Goetzmann et al. ( 2002) related to the Sharpe ratio maxi-
mization, the payo¤ of the optimal structured portfolio is not always increasing
and concave. It can correspond for instance to a straddle. This result is in
line with previous results about portfolio optimization within rank dependent
utility, as in Prigent (2008).
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2 Omega measure

The Omega measure is based on the portfolio return values below and above a
given threshold. It is de�ned as the probability weighted ratio of gains to losses
relative to a return threshold. The Omega measure is compatible with the
second order stochastic dominance. This measure can potentially take account
of the whole probability distribution of the returns. It requires no parametric
assumption on the distribution and is equal to:


L (X) =

R b
L
(1� F (x)) dxR L
a
F (x) dx

=
IL;2(X)

IL;1(X)
; (1)

where F (:) is the cdf of the random variable X (for example equal to the
portfolio return) de�ned on the interval [a; b]. The level L is the threshold chosen
by the investor: returns smaller than L are viewed as losses (which correspond
to IL;1(X)) and those higher than L are gains (component IL;2(X)). Thus, for
a given threshold L, the investor would prefer the portfolio with the highest
Omega measure.
As shown by Kazemi, Schneeweis and Gupta (2003), the Omega function is

equal to:


L (X) =
EP
h
(X � L)+

i
EP
h
(L�X)+

i : (2)

This is the ratio of the expectations of gains above the given level L upon
the expectation of losses below . Therefore, 
F (L) can be interpreted as a ratio
call/put de�ned on the same underlying asset X, with strike L and computed
with respect to the historical probability P. The put correspond to the risk
measure component. It allows the control of the losses below the threshold L.
Note that Omega functions satis�es the following properties:

� For L = EP [X], 
L(X) = 1:

� 
 is a monotone decreasing function with respect to the threshold.

� 
L(X) = 
L(Y ) for all thresholds L if and only X and Y have the same
cdf (FX = FY ).

Kazemi et al. (2003) de�ne the Sharpe Omega by:

Sharpe-Omega = 
L (X)� 1 =
EP [X]� L

EP
h
(L�X)+

i : (3)

If EP [X] < L, the Sharpe Omega will be negative otherwise it will be posi-
tive.Typically, consider the payo¤ X of a stock S at time T which is modelled
by a geometric Brownian motion:

X = S0 exp[(�� �2=2)T + �WT ];
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where WT has the Gaussian distribution N (0; T ). Then, EP [X] = S0 exp[�T ]
does not depend on the volatility. Thus, if S0 exp[�T ] < L then the Sharpe
Omega is an increasing function of the volatility (due to the Vega of the put).
If S0 exp[�T ] > L, the Sharpe Omega is a decreasing function of the volatility.

3 Maximizing the Sharpe Omega Ratio

In this section, we examine the Sharpe Omega maximization for various portfo-
lios based on combinations of a risk free asset, a risky asset on some European
options written on it. Denote by VT (�) the portfolio value corresponding to the
weighting vector �. We have to solve the following optimization problem:

Max S
L (VT )
(�)

=Max
(�)

�
VT (�)� L

�
E
h
(L� VT (�))+

i : (4)

The parameter L is a threshold satisfying 0 < L < VT . We maximize this
function under the budget constraint V0.
We also impose that the portfolio value is positive, whatever the market

evolutions.

3.1 Maximizing the Sharpe Omega Ratio in a complete
market

In this section, we examine the Sharpe Omega maximization problem in a com-
plete �nancial market. Recall that a discrete-time market can be complete if
there exists su¢ ciently available options.

3.1.1 Maximizing the Sharpe ratio

Consider for instance a standard single-period model. Assume that there ex-
ists a �nite set of random events f!i; i = 1; :::; dg endowed with a probabil-
ity measure P = fpi; i = 1; :::; dg. The risk neutral probability is denoted by
Q = fqi; i = 1; :::; dg.
For the Sharpe maximization (with L = V0e

rT ), Goetzmann et al. (2002)
take account of the budget constraint and �x the portfolio value expectation to
M . Thus, they consider the following Lagrangian:

L =
dX
i=1

v2i pi + �

 
V0e

rT � L�
dX
i=1

viqi

!
+ �

 
M �

dX
i=1

vipi

!
: (5)

Thus, the optimal solution exists and is given by:

v�i =M +

0@ MPd
i=1

(qi)
2

pi
� 1

1A�1� qi
pi

�
:
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3.1.2 Maximizing the Sharpe Omega ratio

We consider portfolios with excess returns evi w.r.t. the threshold L (i.e. evi =
vi � L). The Sharpe Omega ratio of such portfolios is equal to:

S
L(V ) =

Pd
i=1 evipiPd

i=1 [�evi]+ pi :
Taking account of the budget constraint and �xing the portfolio value expec-

tation toM , we consider the following Lagrangian: (notations: eV0 = V0erT �L,fM =M � L)

L =
dX
i=1

[�evi]+ pi + � eV0 � dX
i=1

eviqi!+ � fM �
dX
i=1

evipi! : (6)

We assume that 8i, evi 6= 0. The �rst-order conditions for a minimun are:
0 =

@L
@evi = �piIfevi<0g � �qi � �pi;

0 =
@L
@�

= eV0 � dX
i=1

eviqi;
0 =

@L
@�

= fM �
dX
i=1

evipi:
It implies that the ratio qi

pi
takes no more than two values. Thus, except

very special cases, an interior solution does not exist.
Suppose that we search to maximize other Kappa measures than the Sharpe

Omega ratio (see Kaplan and Knowles, 2004). These measures are de�ned by:
for any non null integer n,

KL(V ) =

Pd
i=1 evipi�Pd

i=1 [�evi]+n pi� 1
n

:

Note that for n = 1, we recover the Sharpe Omega ratio and, for n = 2, the
Sortino ratio.
For �xed expectation, the maximization of the Kappa measure is equivalent

to the minimization of the risk measure component. This latter one is also
equivalent to the minimization of expression

Pd
i=1 [�evi]+n pi.

Thus, the Lagrangian is de�ned by:

L =
dX
i=1

[�evi]+n pi + � eV0 � dX
i=1

eviqi!+ � fM �
dX
i=1

evipi! : (7)
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We assume that 8i, evi 6= 0. The �rst-order conditions for a minimum are:

0 =
@L
@evi = �n [�evi]n�1 piIfevi<0g � �qi � �pi;

0 =
@L
@�

= eV0 � dX
i=1

eviqi;
0 =

@L
@�

= fM �
dX
i=1

evipi:
Therefore, even for n > 1, the existence of an interior solution that the ratio

qi
pi
is constant for all random events !i such that ev�i > 0. Therefore, as for the

Omega Sharpe ratio (n = 1), generally there exists no interior solution.

To get an interior solution, we have to add other constraints. For example,
we can �x the variance, which leads to

Pd
i=1 ev2i pi = s2 : In this framework, the

Lagrangian is de�ned by:

L =
dX
i=1

[�evi]+n pi+� eV0 � dX
i=1

eviqi!+� fM �
dX
i=1

evipi!+� s2 � dX
i=1

ev2i pi
!
:

(8)
The �rst-order conditions for a minimum are now:

0 =
@L
@evi = �n [�evi]n�1 piIfevi<0g � �qi � �pi � 2�evipi;

0 =
@L
@�

= eV0 � dX
i=1

eviqi;
0 =

@L
@�

= fM �
dX
i=1

evipi:
0 =

@L
@�

= s2 �
dX
i=1

ev2i pi:
The optimal solution satis�es:

�n [�evi]n�1 � 2�evi = �
qi
pi
+ �, if evi < 0

�2�evi = �
qi
pi
+ �, if evi > 0

with

eV0 =
dX
i=1

eviqi; fM =
dX
i=1

evipi; s2 = dX
i=1

ev2i pi:
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For n = 1, we get:

evi =

�
1

�2�

��
�
qi
pi
+ [�+ Ievi<0]

�
with

(�2�)eV0 =
dX
i=1

�
�
q2i
pi
+ [�+ Ievi<0] qi

�
;

(�2�) fM =
dX
i=1

(�qi + [�+ Ievi<0] pi) ;

(�2�)2 s2 =
dX
i=1

�
�
qi
pi
+ [�+ Ievi<0]

�2
pi:

Solving the system composed by the last three equations provides the value of
the Lagrangian parameters �; �; and �: Note that such result can be examined
for instance for the standard Black-Scholes model. In that case, the Radon-
Nikodym derivative dQ=dP has conditional expectations that we denote by the
process �.
Therefore, an optimal interior solution can be expressed by:

eV � = � 1

�2�

��
�� +

�
�+ IeV �<0

��
:

Nevertheless, as it has been seen, except for additional constraints, the
Sharpe Omega maximization has no interior solution. Therefore, we can search
directly optimal solutions for special structured products, as in Goetzmann et
al. (2002).

3.2 Maximizing the Sharpe Omega Ratio with a money
market account, an equity and a put

In this section, we calculate the Sharpe-Omega ratio of a portfolio composed of
a risk-free asset B,a risky asset S and a put on S. We assume a single period
optimization problem with a static allocation (determined at the beginning of
the period).

3.2.1 Portfolio value

We assume that the portfolio is composed of � money market account, denoted
by B, � risky asset (an equity for example) and  Put option. The time period
is [0; T ]. Thus, the portfolio value VT is given at maturity T by:

VT = �BT + �ST + (K � ST )+; (9)

where ST is the value of the risky asset at maturity T and K is the strike price
of Put.
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The dynamics of the market value of the risky asset S are those of the
standard geometric Brownian motion:

dSt
St

= �dt+ �dWt ; (10)

where � and � are respectively the drift and the volatility of St, and W is a
standard Brownian motion.
Thus we have:

ST = S0 exp[(��
1

2
�2)T + �WT ]:

Then, the expected return expectation of asset S at time T is given by:

E(ST ) = S0 exp[�T ]: (11)

The value of the riskless asset B evolves according to:

dBt = Btrdt: (12)

In this context, the value of the initial investment amount is given by:

V0 = �B0 + �S0 + P0(K); (13)

where P0(K) is the Black and Scholes value of the Put option at time t = 0.
Then, the amount  invested in the put can be written as follows:

 =
V0 � �B0 � �S0

P0(K)
: (14)

3.2.2 Analysis of the Sharpe-Omega risk component

The risk component corresponds to the expectation EP
h
(L� VT )+

i
. In what

follows, we calculate EP
h
(L� VT )+

i
:

Let f be the portfolio payo¤. We have: VT = f (ST ). Then we get:

EP
h
(L� VT )+

i
=

Z
[L� f (s)]+ dPST (s);

=

Z
f(ST )�L

[L� f (s)] dPST (s):

If the portfolio is the asset combination given in (13), than we have:

EP
h
(L� VT )+

i
=

Z
f(ST )�L

�
L� �BT � �s� (K � s)+

�
dPST (s):

We begin by determining the integration domain for ST ; de�ned by set D.

D = fs jf (s) � Lg :
Thus, according to the values of �, � and , f has di¤erent shapes. Due to

the positivity constraint, the amounts must ful�ll the following conditions:
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� �BT + K � 0;

� �BT + �K � 0; and

� � � 0:

Two main cases have to be distinguished:

� � < : the function f is increasing, which is strictly concave (resp. strictly
convex) if and only if  < 0 (resp.  > 0).

� � > : the function f is decreasing on [0;K] then increasing on [K;+1[:

CASE 1 :� > 

The set D is not empty if L � �BT + K: Thus, we have two sub-cases:

a.1 L � �BT + �K then: VT � L is equivalent to ST � L��BT�K
�� ;

a.2 L > �BT + �K then: VT � L is equivalent to ST � L��BT

� .

In what follows, we set:

k1 =
L� �BT � K

� �  ;

and

k2 =
L� �BT

�
:

For case (a.1), EP
h
(L� VT )+

i
can be written as follows :

EP
h
(L� VT )+

i
=

Z k1

0

(L� �BT + ( � �) s� K) dPST (s): (15)

Then, we get the following relation:

EP
h
(L� VT )+

i
= (L� �BT � K)

Z k1

0

dPST (s)+( � �)
Z k1

0

sdPST (s): (16)

Notations: z = lnS0 +
�
�� �2

2

�
T and � (:) is the cumulative distribution

function of the standard Gaussian distribution.1

Then, we have: Z k1

0

dPST (s) = �
�
�z � ln k1

�
p
T

�
;

1Recall that we assume that S is lognormally distributed.
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and Z k1

0

sdPST (s) = exp
�
z +

�2

2
T

�
�

�
�z � ln k1 + �

2T

�
p
T

�
:

Therefore, we deduce:

EP
h
(L� VT )+

i
= (L� �BT � K)

�
�

�
�z � ln k1

�
p
T

��
(17)

+( � �) exp
�
z +

�2

2
T

�
�

�
�z � ln k1 + �

2T

�
p
T

�
:

Set:

A = �

�
�z � ln k1

�
p
T

�
;

and

B = �

�
�z � ln k1 + �

2T

�
p
T

�
:

Lemma 1 If � >  and �BT + K � L � �BT + �K, the put component is
given by:

EP
h
(L� VT )+

i
= (L� �BT � K)A+ ( � �) exp

�
z +

�2

2
T

�
B:

Similarly, for case (a.2), we get the following result (see Appendix 1 for more
details).

Lemma 2 If � >  and L > �BT + �K, the put component is given by:

EP
h
(L� VT )+

i
= �K�

�
�z � lnK

�
p
T

�
+ (L� �BT )�

�
�z � ln k2

�
p
T

�
+ exp

�
z +

�2

2
T

�
�

�
�z � lnK + �2T

�
p
T

�
�� exp

�
z +

�2

2
T

�
�

�
�z � ln k2 + �

2T

�
p
T

�
CASE 2 :� � 

Here, inequation f (ST ) � L can have solutions only if L � �BT + �K. As
previous case, two sub-cases are examined:

b.1 L � �BT + K. Then the portfolio value VT is smaller than threshold L
if and only if

k1 � ST � k2;
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b.2 L > �BT + K. Then the portfolio value VT is smaller than threshold L
if and only if

ST � k2:

Thus, we obtain the bounds of ST according the the value of � et .
We perform the same calculation for the cases (b.1) and (b.2).

The �rst case gives the following value of EP
h
(L� VT )+

i
:

EP
h
(L� VT )+

i
=

Z k2

k1

�
L� �BT � �s�  (K � s)+

�
dPST (s)

=

Z K

k1

(L� �BT + ( � �) s� K) dPST (s)

+

Z k2

K

(L� �BT � �s) dPST (s)

Finally, in (b.2) case, we have:

EP
h
(L� VT )+

i
=Z k2

0

(L� �BT � (� � ) s� K) dPST (s) +
Z k2

K

(L� �BT � �s) dPST (s):

Details about calculation are provided in Appendix 1.

3.2.3 Conditions on portfolio weights

Assume that the expected value is �xed and equal to the levelM . this condition
yields to:

�BT + �S0e
�T + EP [K � ST ]+ =M > L; (18)

where EP [K � ST ]+is like a Put "à la Black-Scholes" without the discount
factor. We denote it by:

BS (�) e�T : (19)

In that case, the Sharpe Omega maximization is equivalent to minimiza-
tion of the put component with a single variable. Indeed, both � and  are
determined from relations:�

�B0 + �S0 + P0 (K) = V0;
�S0e

�T + BS (�) e�T =M � �BT :
(20)

Thus, � and  can be expressed as function of �.
Introduce the following parameters:

a11 =
�BS (�) e�TB0 + P0 (K)B0erT

�
; (21)

b11 =
BS (�)V0e

�T � P0 (K)M
�

: (22)
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and

a21 =
S0B0
�

�
e�T � erT

�
; (23)

b21 =
S0
�

�
M � S0e�TV0

�
: (24)

Lemma 3 For �xed portfolio value expectation, the amounts invested on the
risky asset and the put are linear functions of the amount invested on the risk
free asset. They are given by:2

� = a11�+b11; (25)

 = a21�+b21: (26)

Remark 4 Parameters a11 and a21 are non positive. The function b11 (M) is
always increasing and b21 (M) is decreasing (see Appendix 3 for proof).

3.2.4 Constraints on portfolio optimization

The maximization problem is subject to the condition of positivity of VT (VT >
0). Therefore, the following constraints must be satis�ed:
Positivity for ST = 0: It corresponds to inequality �BT + K � 0. Thus,

we obtain:
�BT + a21 �K � �+Kb21 � 0 (27)

which is equivalent to the following constraint on amount �:

� (�BT � a21 �K) � Kb21:

Positivity for ST = K: This second constraint is written as follows:

�BT + �K � 0:

Therefore, we get:
�BT + a11 �K � �+Kb11 � 0; (28)

which is equivalent to:

� (�BT � a11 �K) � Kb11

Positivity for ST > K: This third condition corresponds to � � 0. It is
equivalent to �a11� � b11:
Note that, for threshold L di¤erent from 0, the portfolio including the risk-

free asset yields the highest Sharpe-Omega ratio (equal to +1). However, other
constraints can be introduced, such as a minimal participation on risky asset
�uctuations. For this purpose, we prevent the portfolio to be entirely invested
on the risk-free asset (�B0 6= V0).

2See Appendix 2.
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3.2.5 Shape of optimal portfolio values

We examine optimal portfolio payo¤s according to various strike values. We
consider the following parameters values:

S0 = 100; B0 = 1; � = 0:15; � = 0:05; r = 0:03; T = 1; V0 = 1000; L = V0:

We search for the optimal amounts (��; ��; �) that maximize the Sharpe
Omega ratio. For this purpose, �rst we determine the optimal solution for �xed
expectation M . Then, in a second step, we search the optimal value �� by
varying the level of M .
We begin by examining the at-the-money case (the strike of the put is equal

to the spot value K = S0 = 100). Figure 1 illustrates relationship between
the reward (the expected value M) and the risk (the put component E(L �
VT )

+). For the e¢ cient frontiers (Put , Expected return), maximization at
given expected return M , the put price exhibits the following variations: it is
decreasing whenM varies between 1000 and 1025; 4 and increasing forM greater
than 1025; 4: Figure 2 provides the optimal weights according to expected value
M .

0 50 100 150 200 250 300 350 400 450 500
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1060

1080
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1180

 PUT

M

Fig.1. E¢ cient frontier Fig.2. Optimal allocations

(Put E(L� VT )+;M) for di¤erent values of M

Figure 3 displays the Sharpe-Omega value of the optimal portfolio as func-
tion of the expected portfolio value. The maximum Sharpe-Omega ratio S
�K=100
is equal to 86; 88 (cf. Figure 3) to be compared to 1; 31 for the risky asset. The
maximum ratio is reached for M� = 1025; 4, which is smaller than V0 exp�T .
Thus, the value of M� is relatively low. This is due to the fact that, without
speci�c constraint on the amount invested on the risk free asset, the optimal
would correspond to a whole investment on this risk-free asset. The analysis of
optimal ratio sensitivity to the strike K is illustrated in Figure 4. The optimal
ratio decreases for values of K varying from 90 to 100 and then increases for K
below 90.
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Fig.3. Sharpe-Omega ratio Fig.4. Sharpe-Omega ratio

w.r.t. M for K in [70,100]

Indeed, the optimal portfolio structure changes dramatically when K be-
comes slightly smaller than 100. Optimal portfolios when K is ranged between
90 and 100 have the same shape and do not contain the risky asset S (beta is
zero). Nonzero allocation to risky asset appears for K below 90.
The optimal portfolio corresponding to K = 100 has an expected return of

2:54% with minimum value at the end of the period of 999:8 (0:02% of the initial
value V0).
As illustrated in Figure 5, the optimal payo¤ is similar to a naked put. The

optimal allocation shows 97:6% invested in risk-free, 0% in risky asset and 3%
used as a hedge. Therefore, the maximization of Sharpe-Omega ratio yields to an
optimal portfolio which limits the downside risk and enhances the performance
pro�le on the left side (i.e. when risky asset drops). Note that the shape of V �T
is not always increasing and concave as proved by Goetzmann et al. ( 2002) for
the Sharpe ratio maximization. When we focus on the impact of the � value on
the shape of the optimal payo¤ VT ; we obtain the same result concerning the
optimal allocation (with K = 100).
The corresponding optimal portfolio pro�les are displayed in Figure 6 for

di¤erent values of the drift �.
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Fig.5. Optimal portfolio payo¤ Fig.6. Optimal portfolio payo¤

for at-the-money put for various �

The portfolio payo¤ changes signi�cantly when � becomes higher than the
risk-free rate (r = 0:03). Furthermore, optimal portfolio allocation is concen-
trated on risk-free and put instruments once � is higher than 0:03.

� M� Put� S
� w��(%) w��(%) w�(%)
0,05 1025,4 0,2924 86,88 96.99 0 3.01
0,08 1019 0,1682 112,96 97.02 0 2.98
0,11 1013,9 0,04887 284,44 97.03 0 2.97
0,15 1008,75 0,02716 322,19 97.04 0 2.96

Table 1: Optimal parameters for di¤erent values of �

3.2.6 Portfolio excluding risk-free instrument

We run the same optimization as in previous section. Sharpe-Omega ratio is
minimum for K = 93. It is interesting to note that the optimal ratio calculated
for K = 100 is very close to value in the case of portfolio including risk-free
instrument (2:74). Unlike the previous case, optimal ratio exceeds 2:74 only
when K becomes much smaller, i.e. below 85.
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Fig.7. Sharpe-Omega for K in
[80; 100]
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Fig.8. Optimal portfolio pro�le

Optimal allocation for K = 100 shows 94% invested in the risky instrument
and 6% as a hedge on the downside. Portfolio expected returnM is higher than
in the previous case with a lower minimum at 6%.

3.3 Maximizing the Sharpe Omega Ratio with an equity,
one put and one call

In this section, we add a call option to the previous portfolio (excluding risk-
free instrument). This second structured �nancial product is a portfolio which
involves � risky assets combined with � calls and  puts written on the risky
asset. The time period is [0; T ]. Thus, the portfolio value VT is given at maturity
T by:

VT = �(ST �KC)
+ + �ST + (KP � ST )+; (29)

where KC is the strike price of Call and KP is the strike price of the Put.
The value of the initial investment amount is given by:

V0 = �C0(Kc) + �S0 + P0(KP ): (30)

3.3.1 Conditions on weights

We determine the optimal combination of call/put and stock with respect to
the Sharpe Omega measure. We search for the optimal amounts ��, �� and �.
We solve this problem under the budget constraint V0:

V0 = �C0(Kc) + �S0 + P0(KP ): (31)

In this case, we �nd (�; ) such that:�
V0 � �C0(Kc) = �S0 + P0(KP );

M � �EP [ST �KC ]
+
= �S0e

�T + EP [KP � ST ]+

18



Thus, we deduce the value ��:

��=

���� M � �EP [ST �KC ]
+ EP [KP � ST ]+

V0 � �C0(Kc) P0(KP )

����
�

; (32)

where

� =

���� S0e�T EP [KP � ST ]+
S0 P0(KP )

����
We obtain:

� = �

 
C0(Kc)EP [KP � ST ]+ � P0(KP )EP [ST �KC ]

+

�

!
(33)

+
MP0 (K)� V0EP [KP � ST ]+

�
(34)

Therefore, �� can be written as a12�+b12, with

a12 =
C0(Kc)EP [KP � ST ]+ � P0(KP )EP [ST �KC ]

+

�
(35)

and

b12 =
MP0 (K)� V0EP [KP � ST ]+

�
(36)

Similarly, we determine �:

�=

���� S0erT M � �EP [ST �KC ]
+

S0 V0 � �C0(Kc)

����
�

; (37)

and � can be written as a22�+b22, with

a22 =
S0EP [ST �KC ]

+ � C0(Kc)S0e
�T

�
; (38)

and

b22 =
V0S0e

�T � S0M
�

: (39)

3.3.2 Constraints on portfolio optimization

We keep the positivity constraint on VT , as in the �rst structured portfolio.
This yields to the following conditions on �:
Positivity for ST = 0:

1)  � 0, which is equivalent to a22�+ b22 � 0:
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Positivity for ST = KP :

2) � (KP �KC)
+
+ �KP � 0; (40)

which is equivalent to�
(KP �KC)

+
+ a12KP

�
�+KP b12 � 0:

Positivity for ST = KC :

3) �KC +  (KP �KC)
+ � 0

which is equivalent to�
a22 (KP �KC)

+
+ a12KC

�
�+KCb12 + b22 (KP �KC)

+ � 0:

and �nally:
Positivity for ST > Max(KC ;KP ):

4) � + � � 0; which is equivalent to (a12 + 1)�+ b12 � 0: (41)

In what follows, we deeply analyze the case KP = 100 (at-the-money put)
and KC = 115 (out-of-the money call). Figure 9 provides the e¢ cient frontier
(Put, Expected return). When we maximize the Sharpe-Omega ratio at given
expected returnM , the put price exhibits the following variations: it is decreas-
ing when M varies between 1000 and 1035:5 and increasing for M greater than
1035:5: Figure 10 provides the optimal weights according to expected value M .

0 100 200 300 400 500 600 700 800
1000

1050

1100

1150

1200

1250

1300

M

Put

Fig.9. E¢ cient frontier

100

105

110

115
85

90

95

100

1

2

3

4

5

Kc (Call)Kp (Put)

S
ha

rp
e

O
m

eg
a

Fig.10. Optimal allocations w.r.t.
M

Maximum Sharpe-Omega ratio is reached for M� = 1035:5. Portfolio payo¤
remains convex with higher slope on its right side. Thus, the portfolio expected
return is 3:5% with a limited downside from its initial value at 3:8%. The
optimal allocation is: -2:05% on call option, 96:2% on risky instrument and
5:86% on put option.

20



0 20 40 60 80 100 120 140 160 180 200
950

1000

1050

1100

1150

1200

1250

1300

ST

V
T

KC = 115;KP = 100

50 60 70 80 90 100 110 120 130 140

500

1000

1500

2000

2500

3000

3500

4000

ST

V
T

KC = 100;KP = 85

Fig.11.Optimal portfolio payo¤
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As shown in Figure 12, optimal Sharpe-Omega ratio variations are very
similar to those in the �rst structured portfolio case. Moreover, the Sharpe-
Omega ratio calculated for KP = 100 is not sensitive to KC . Looking more
closely to optimal portfolio weightings, call option allocation varies between
�7% (when KP is deeply out-of-the money) to 20%. When call option weight
is positive, it provides additional �beta�to the portfolio for high values of the
risky instrument, in exchange of lower portfolio minimum. In the opposite case,
it neutralizes the portfolio �beta�.
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Fig.13. The three pro�les

To summarize, we plot in Figure 13 the three optimal porfolio payo¤s:

Simulation 1: portfolio with money market account (K = 100),
Simultation 2: portfolio without money market account (K = 100),
Simulation 3: portfolio call/put (Kp = 100;Kc = 100).
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4 Conclusion

In this paper, we have examined performance maximization of plain-vanilla
structured products. For this purpose, we have considered the Omega or Sharpe
Omega performance ratios introduced by Keating and Shadwick (2002) and by
Kazemi et al. (2004). Optimal payo¤s are no longer increasing and concave as
for the Sharpe ratio maximization case illustrated by Goetzmann et al. (2002).
They can be always decreasing (it means that the investor wants a high payo¤
only when the �nancial market drops signi�cantly) or decreasing then increasing
such as straddles. This latter kind of strategy is based on anticipations of
relatively extreme events (signi�cant drops or rises of the risky asset due to high
volatility). Investors bear losses for relatively stable �nancial markets. This is
in line with previous results on portfolio optimization within rank dependent
utility, as quoted by Prigent (2008). Further extensions can take account of
more complex derivatives, such as exotic options and also dynamic portfolio
strategies.
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5 Appendix

Appendix 1: Computation of the risk component EP
h
(L� VT )+

i
Case (a.2).
We have:

EP
h
(L� VT )+

i
=

Z K

0

(L� �BT � �s� K + s) dPST (s)

+

Z k2

K

(L� �BT � �s) dPST (s)

=

Z K

0

(L� �BT � K) dPST (s) +
Z K

0

( � �) sdPST (s)

+

Z k2

K

(L� �BT ) dPST (s) +
Z k2

K

(��s) dPST (s)

Moreover, we have:

1)
Z K

0

(L� �BT � K) dPST (s) = (L� �BT � K)�
�
�z � lnK

�
p
T

�
;

2)
Z K

0

( � �) sdPST (s) = ( � �) exp
�
z +

�2

2
T

�
�

�
�z � lnK + �2T

�
p
T

�
;

3)
Z k2

K

(L� �BT ) dPST (s) = (L� �BT )
�
�

�
�z � ln k2

�
p
T

�
� �

�
�z � lnK

�
p
T

��
;

4)
Z k2

K

(��s) dPST (s) = �� exp
�
z +

�2

2
T

�
Wa2 ;

where Wa2 is equal to:�
�

�
�z � ln k2 + �

2T

�
p
T

�
� �

�
�z � lnK + �2T

�
p
T

��
:
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Finally, we deduce:

EP
h
(L� VT )+

i
= �K�

�
�z � lnK

�
p
T

�
+ (L� �BT )�

�
�z � ln k2

�
p
T

�
+ exp

�
z +

�2

2
T

�
�

�
�z � lnK + �2T

�
p
T

�
�� exp

�
z +

�2

2
T

�
�

�
�z � ln k2 + �

2T

�
p
T

�
Case (b.1).

EP
h
(L� VT )+

i
=

Z K

k1

(L� �BT + ( � �) s� K) dPST (s)

+

Z k2

K

(L� �BT � �s) dPST (s)

The �rst term can be written as follows:

i1 = (L� �BT � K)
Z K

k1

dPST (s) + ( � �)
Z K

k1

sdPST (s);

= (L� �BT � K)
�
�

�
�z � lnK

�
p
T

�
� �

�
�z � ln k2

�
p
T

��
+( � �) exp

�
z +

�2T

2

��
�

�
�z � lnK + �2T

�
p
T

�
� �

�
�z � ln k1 + �

2T

�
p
T

��
:

The second term is equal to:

i2 = (L� �BT )
Z k2

K

dPST (s)� �
Z k2

K

sdPST (s)

= (L� �BT )
�
�

�
�z � ln k2

�
p
T

�
� �

�
�z � lnK

�
p
T

��
�� exp

�
z +

�2T

2

��
�

�
�z � ln k2 + �

2T

�
p
T

�
� �

�
�z � lnK + �2T

�
p
T

��
Case (b.2).

EP
h
(L� VT )+

i
=

Z k2

0

(L� �BT � (� � )PST (s)� K) dPST (s)

+

Z k2

K

(L� �BT � �s) dPST (s)

The �rst term is expressed as follows:

= (L� �BT � K)
Z K

0

dPST (s)� (� � )
Z K

0

sdPST (s)

(L� �BT � K)�
�
�z � lnK

�
p
T

�
� (� � )�

�
�z � lnK + �2T

�
p
T

�
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The second term is expressed as follows:

= (L� �BT )
Z k2

K

dPST (s)� �
Z k2

K

sdPST (s)

= (L� �BT )
�
�

�
�z � ln k2

�
p
T

�
� �

�
�z � lnK

�
p
T

��
�� exp

�
z +

�2T

2

��
�

�
�z � ln k2 + �

2T

�
p
T

�
� �

�
�z � lnK + �2T

�
p
T

��
Appendix 2: calculation of amounts � and 

From equations (20), we deduce:

� =

���� V0 � �B0 P0 (K)
M � �B0erT BS (�) e�T

����
�

;

where

� =

���� S0 P0 (K)
S0e

�T BS (�) e�T

����
= S0

�
BS (�)� P0 (K) e�T

�
(42)

Then, we have:

� = �

�
�BS (�) e�TB0 + P0 (K)B0erT

�

�
+
BS (�)V0e

�T � P0 (K)M
�

:

Similarly we determine :

=

���� S0 V0 � �B0
S0e

�T M � �B0erT
����

�
;

from which, we deduce:

 = �

�
�S0B0erT +B0S0e�T

�

�
+
S0M � S0e�TV0

�
:

Appendix 3 : Signs of a11, a21, b1 (M) and b2 (M)

Parameters a11 and a21 are non positive.
We have:

a11 =
�BS (�) e�TB0 + P0 (K)B0erT

�
;

=
B0
�

�
P0 (K) e

rT �BS (�) e�T
�
:
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The sign of � depends on [BS (�)� P0 (K)]. However, to look for the sign
of a11, we �rst determine the sign of

@P (r)
@r . We have:

@P

@r
=

@C

@r
� TKe�rT ;

= Ke�rT [N(d2)� 1]

Since [N(d2)� 1] < 0, we deduce that TP (r)+@P
@r = T

�
P (r) +Ke�rT [N(d2)� 1]

�
:

Additionally,

P (r) = S0N(d1)�Ke�rT [N(d2)� 1]� S0 +Ke�rT

)
P (r) +Ke�rT [N(d2)� 1] = S0 [N(d1)� 1]

[N(d1)� 1] < 0. Thus, e�rT P (r) is decreasing.
If � > r then BS (�) < P0 (K). Hence, the sign of a1 is negative since

P0 (K) e
rT > BS (�) e�T and � < 0.

Similarly, we determine the sign of a2.

a21 =
S0B0
�

�
e�T � erT

�
;

If � > r ) e�T > erT , and � < 0. Therefore, a2 < 0.

The function b11 (M) is always increasing and b21 (M) is decreasing.

b11 =
BS (�)V0e

�T � P0 (K)M
�

If � > r and M > V0e
�T ( 100% in ST ) then BS (�) < P0 (K) and b1 > 0.
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