Clustering in Fisher Discriminative Subspaces

Abstract : Clustering in high-dimensional spaces is nowadays a recurrent problem in many scientific domains but remains a difficult problem. This is mainly due to the fact that high-dimensional data usually live in low-dimensional subspaces hidden in the original space. This paper presents a model-based clustering approach which models the data in a discriminative subspace with an intrinsic dimension lower than the dimension of the original space. An estimation algorithm, called Fisher-EM algorithm, is proposed for estimating both the mixture parameters and the discriminative subspace. Experiments show that the proposed approach outperforms existing clustering methods and provides a useful representation of the high-dimensional data.
Type de document :
Communication dans un congrès
13th International Conference on Applied Stochastic Models and Data Analysis (ASMDA 2009), Jun 2009, Vilnius, Lithuania. (elec. proc), 2009
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal-paris1.archives-ouvertes.fr/hal-00375581
Contributeur : Camille Brunet <>
Soumis le : mercredi 15 avril 2009 - 15:02:11
Dernière modification le : mardi 30 janvier 2018 - 17:50:03
Document(s) archivé(s) le : jeudi 10 juin 2010 - 20:33:09

Fichier

article_amsda.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00375581, version 1

Collections

Citation

Charles Bouveyron, Camille Brunet. Clustering in Fisher Discriminative Subspaces. 13th International Conference on Applied Stochastic Models and Data Analysis (ASMDA 2009), Jun 2009, Vilnius, Lithuania. (elec. proc), 2009. 〈hal-00375581〉

Partager

Métriques

Consultations de la notice

423

Téléchargements de fichiers

51