A. Hyvärinen, Independant Component Analysis, 2001.

A. J. Bell and T. J. , An Information-Maximization Approach to Blind Separation and Blind Deconvolution, Neural Computation, vol.20, issue.1, pp.1129-1159, 1995.
DOI : 10.1109/78.301850

E. Moulines, J. Cardoso, and E. Cassiat, Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.3617-3620, 1997.
DOI : 10.1109/ICASSP.1997.604649

H. Attias, Independent Factor Analysis, Neural Computation, vol.4, issue.4, pp.803-851, 1999.
DOI : 10.1007/BF02293851

H. Attias, Independent factor analysis with temporally structured factors, Proceedings of the 12th Conference on Advances in Neural Information Processing Systems (NIPS), pp.386-392, 2000.

S. Moussaoui, H. Hauksdóttir, F. Schmidt, C. Jutten, J. Chanussot et al., On the decomposition of Mars hyperspectral data by ICA and Bayesian positive source separation, Advances in Blind Signal Processing, pp.2194-2208, 2008.
DOI : 10.1016/j.neucom.2007.07.034

URL : https://hal.archives-ouvertes.fr/hal-00272349

A. Hyvärinen and R. Karthikesh, Imposing sparsity on the mixing matrix in independent component analysis, Neurocomputing, vol.49, issue.1-4, pp.151-162, 2002.
DOI : 10.1016/S0925-2312(02)00512-X

K. Zhang and L. W. Chan, ICA with Sparse Connections, Proceedings of Intelligent Data Engineering and Automated Learning Conference (IDEAL), pp.530-537, 2006.
DOI : 10.1007/11875581_64

D. J. Bartholomew and K. Martin, Latent variable models and factor analysis. Kendall's library of satisticsyear, 1999.

T. Bakir, A. Peter, R. Riley, and J. Hackett, Non-Negative Maximum Likelihood ICA for Blind Source Separation of Images and Signals with Application to Hyperspectral Image Subpixel Demixing, 2006 International Conference on Image Processing, pp.3237-3240, 2006.
DOI : 10.1109/ICIP.2006.312913

K. A. Bollen, Structural Equations with Latent Variables, 1989.
DOI : 10.1002/9781118619179

S. Amari, A. Cichocki, and H. H. Yang, A New Learning Algorithm for Blind Signal Separation, Proceedings of the 8th Conference on Advances in Neural Information Processing Systems (NIPS), pp.756-763, 1995.

G. Shafer, A mathematical theory of evidence, 1976.

E. Côme, L. Oukhellou, T. Denoeux, and P. Aknin, Learning from partially supervised data using mixture models and belief functions, Pattern Recognition, vol.42, issue.3, pp.334-348, 2009.
DOI : 10.1016/j.patcog.2008.07.014

A. Cichocki and S. Amari, Adaptive Blind Signal and Image Processing, 2002.
DOI : 10.1002/0470845899