The lattice of embedded subsets

Abstract : In cooperative game theory, games in partition function form are real-valued function on the set of so-called embedded coalitions, that is, pairs $(S,\pi)$ where $S$ is a subset (coalition) of the set $N$ of players, and $\pi$ is a partition of $N$ containing $S$. Despite the fact that many studies have been devoted to such games, surprisingly nobody clearly defined a structure (i.e., an order) on embedded coalitions, resulting in scattered and divergent works, lacking unification and proper analysis. The aim of the paper is to fill this gap, thus to study the structure of embedded coalitions (called here embedded subsets), and the properties of games in partition function form.
Type de document :
Article dans une revue
Discrete Applied Mathematics, Elsevier, 2010, 158 (5), pp.479-488. 〈10.1016/j.dam.2009.10.015〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger
Contributeur : Michel Grabisch <>
Soumis le : vendredi 19 février 2010 - 18:01:37
Dernière modification le : mardi 27 mars 2018 - 11:48:05
Document(s) archivé(s) le : vendredi 18 juin 2010 - 21:21:17


Fichiers produits par l'(les) auteur(s)




Michel Grabisch. The lattice of embedded subsets. Discrete Applied Mathematics, Elsevier, 2010, 158 (5), pp.479-488. 〈10.1016/j.dam.2009.10.015〉. 〈hal-00457827〉



Consultations de la notice


Téléchargements de fichiers