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Abstract

Clustering in high-dimensional spaces is nowadays a recurrent problem in many sci-

entific domains but remains a difficult task from both the clustering accuracy and the

result understanding points of view. This paper presents a discriminative latent mixture

(DLM) model which models the data in a latent orthonormal discriminative subspace with

an intrinsic dimension lower than the dimension of the original space. By constraining

model parameters within and between groups, a family of 8 parsimonious DLM models is

exhibited and this allows to fit onto various situations. An estimation algorithm, called

the Fisher-EM algorithm, is also proposed for estimating both the mixture parameters

and the discriminative subspace. Experiments on simulated and real datasets show that

the proposed approach outperforms existing clustering methods and provides a useful

representation of the clustered data. The method is as well applied to the clustering of

mass spectrometry data.

Keywords: high-dimensional clustering, model-based clustering, discriminative sub-

space, Fisher criterion, visualization, parsimonious models.

1 Introduction

In many scientific domains, the measured observations are nowadays high-dimensional and

clustering such data remains a challenging problem. Indeed, the most popular clustering meth-

ods, which are based on the mixture model, show a disappointing behavior in high-dimensional

spaces. They suffer from the well-known curse of dimensionality [6] which is mainly due to the
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fact that model-based clustering methods are over-parametrized in high-dimensional spaces.

Furthermore, in several applications such as mass spectrometry or genomics, the number of

available observations is small compared to the number of variables and such a situation

increases the difficulty of the problem.

Hopefully, since the dimension of observed data is usually higher than their intrinsic di-

mension, it is theoretically possible to reduce the dimension of the original space without

loosing any information. Therefore, dimension reduction methods are traditionally used be-

fore the clustering step. Feature extraction methods such as Principal Component Analysis

(PCA) or feature selection methods are very popular. However, these approaches of dimension

reduction do not consider the classification task and provide a sub-optimal data representa-

tion for the clustering step. Indeed, dimension reduction methods imply an information loss

which could be discriminative. Only few approaches combine dimension reduction with the

classification aim but, unfortunately, those approaches are all supervised methods. Fisher

Discriminant Analysis (FDA) (see Chap. 4 of [25]) is one of them in the supervised classifica-

tion framework. FDA is a powerful tool for finding the subspace which best discriminates the

classes and reveals the structure of the data. This subspace is spanned by the discriminative

axes which maximize the ratio of the between class variance and the within class variance.

To avoid dimension reduction, several subspace clustering methods have been proposed

in the past few years to model the data of each group in low-dimensional subspaces. These

methods turned out to be very efficient in practice. However, since these methods model

each group in a specific subspace, they are not able to provide a global visualization of the

clustered data which could be helpful for the practician. Indeed, the clustering results of high-

dimensional data are difficult to understand without a visualization of the clustered data. In

addition, in scientific fields such as genomics or economics, original variables have an actual

meaning and the practician could be interested in interpreting the clustering results according

to the variable meaning.

In order to both overcome the curse of dimensionality and improve the understanding

of the clustering results, this work proposes a method which adapts the traditional mixture

model for modeling and classifying data in a discriminative subspace. For this, the pro-

posed discriminative latent mixture (DLM) model combines the model-based clustering goals

with the discriminative criterion introduced by Fisher. The estimation procedure proposed

in this paper and named Fisher-EM has three main objectives: firstly, it aims to improve

clustering performances with the use of a discriminative subspace, secondly, it avoids estima-

tion problems linked to high dimensions through model parsimony and, finally, it provides a

low-dimensional discriminative representation of the clustered data.

The reminder of this manuscript has the following organization. Section 2 reviews the

problem of high-dimensional data clustering and existing solutions. Section 3 introduces the

discriminative latent mixture model and its submodels. The link with existing approaches

is also discussed in Section 3. Section 4 presents an EM-based procedure, called Fisher-
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EM, for estimating the parameters of the DLM model. Initialization, model selection and

computational issues are also considered in Section 4. In Section 5, the Fisher-EM algo-

rithm is compared to existing clustering methods on simulated and real datasets. Section 6

presents the application of the Fisher-EM algorithm to a real-world clustering problem in

mass-spectrometry imaging. Some concluding remarks and ideas for further works are finally

given in Section 7.

2 Related works

Clustering is a traditional statistical problem which aims to divide a set of observations

{y1, . . . , yn} described by p variables into K homogeneous groups. The problem of clustering

has been widely studied for years and the reader could refer to [17, 27] for reviews on the

clustering problem. However, the interest in clustering is still increasing since more and

more scientific fields require to cluster high-dimensional data. Moreover, such a task remains

very difficult since clustering methods suffer from the well-known curse of dimensionality [6].

Conversely, the empty space phenomenon [45], which refers to the fact that high-dimensional

data do not fit the whole observation space but live in low-dimensional subspaces, gives hope

to efficiently classify high-dimensional data. This section firstly reviews the framework of

model-based clustering before exposing the existing approaches to deal with the problem of

high dimension in clustering.

2.1 Model-based clustering and high-dimensional data

Model-based clustering, which has been widely studied by [17, 36] in particular, aims to parti-

tion observed data into several groups which are modeled separately. The overall population

is considered as a mixture of these groups. Let us consider a given dataset of n observations

{y1, . . . , yn} to divide into K homogeneous groups. Let us also assume that the observations

{y1, ..., yn} are independent realizations of a random vector Y ∈ R
p and that f is its density

function. Then, the finite mixture model is:

f(y) =
K
∑

k=1

πkfk(y),

where fk and πk respectively represent the conditional density function and the mixture

proportion of the kth component. The clusters are often modeled by the same parametric

density function in which case the finite mixture model is:

f(y) =

K
∑

k=1

πkf(y; θk),
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where θk is the parameter vector for the kth component. Moreover, the density function fk

is, most commonly, a multivariate Gaussian density φk parametrized by its mean µk and its

covariance matrix Σk, such that the density function of Y can be written in this way

f(y) =

K
∑

k=1

πkφ(y;µk,Σk).

The unknown parameters πk, µk and Σk, k = 1, ...,K, are usually estimated by the maximum

likelihood owing to the Expectation-Maximization (EM) algorithm proposed by [12] and ex-

tended by [10], [11], [35]. Since the maximization of the complete likelihood is intractable, the

EM algorithm is based on the maximization of the conditional expectation of the likelihood

given current parameters and consists of two steps: the expectation step first computes the

posterior probabilities and the second step maximizes the expectation of the complete like-

lihood subject to the posterior probabilities. These two steps are iteratively computed until

the convergence of the likelihood. The partition is designed afterward using the maximum a

posteriori (MAP) rule: each observation is assigned to the group with the highest posterior

probability.

Unfortunately, model-based clustering methods show a disappointing behavior when the

number of observations is small compared to the number of parameters to estimate. Indeed, in

the case of the Gaussian mixture model, the number of parameters to estimate is a function of

the square of the dimension p and the estimation of this potentially large number of parameters

is consequently difficult with a small dataset. In particular, when the number of observations n

is of the same order than the number of dimensions p, model-based clustering methods have to

face numerical problems due to the ill-conditioning of the covariance matrices. Furthermore,

it is not possible to use the Gaussian mixture model without restrictive assumptions for

clustering a dataset for which n is smaller than p. Indeed, for clustering such data, it would

be necessary to invert K covariance matrices which would be singular. To overcome these

problems, several strategies have been proposed in the literature among which dimension

reduction and subspace clustering.

2.2 Dimension reduction and clustering

Earliest approaches proposed to overcome the problem of high dimension in clustering by

reducing the dimension before using a traditional clustering method. Among the unsupervised

tools of dimension reduction, Principal Component Analysis (PCA) [29] is the traditional and

certainly the most used technique for dimension reduction. It aims to project the data on

a lower dimensional subspace in which axes are build by maximizing the variance of the

projected data. However, PCA is a linear tool, which means that non-linear dependencies

are not take into account. Therefore, other alternatives have been proposed: Kambhatla and

Leen [30] for example, have developed a method which uses PCA but locally, in restricted
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parts of the space; Scholkopf and Smola [43] have proposed a method called Kernel PCA

which transforms the original data in a higher dimensional space before applying PCA in these

transformed data; Hastie et al. [24] and Girard [20] have also proposed non-linear versions

of PCA. Other non-linear projection tools can be mentioned such as Kohonen’s maps [31].

For a review of these dimension reduction approaches, see [48]. An other way to reduce the

dimension in an unsupervised problem has been recently considered in [41] and [34] in which

the problem of feature selection for model-based clustering is recasted as a model selection

problem. However, such approaches remove variables and consequently information which

could have been discriminative for the clustering task.

2.3 Subspace clustering

In the past few years, new approaches focused on the modeling of each group in specific

subspaces of low dimensionality. Subspace clustering methods can be split into two cate-

gories: heuristic and probabilistic methods. Heuristic methods use algorithms to search for

subspaces of high density within the original space. On the one hand, bottom-up algorithms

use histograms for selecting the variables which best discriminate the groups. The Clique

algorithm [1] was one of the first bottom-up algorithms and remains a reference in this family

of methods. On the other hand, top-down algorithms use iterative techniques which start

with all original variables and remove at each iteration the dimensions without groups. A

review on heuristic methods is available in [40]. Conversely, probabilistic methods assume

that the data of each group live in a low-dimensional latent space and usually model the data

with a generative model. Earlier strategies [42] are based on the factor analysis model which

assumes that the latent space is related with the observation space through a linear relation-

ship. This model was recently extended in [5, 37] and yields in particular the well known

mixture of probabilistic principal component analyzers [46]. Recent works [9, 38] proposed

two families of parsimonious and regularized Gaussian models which partially encompass pre-

vious approaches. All these techniques turned out to be very efficient in practice to cluster

high-dimensional data. However, despite their qualities, these probabilistic methods mainly

consider the clustering aim and do not take enough into account the visualization and under-

standing aspects.

2.4 From Fisher’s theory to discriminative clustering

In the case of supervised classification, Fisher poses, in his precursor work [15], the problem of

the discrimination of three species of iris described by four measurements in these terms: What

linear function of the four measurements will maximize the ratio of the difference between the

specific means to the standard deviation within species? Such a remark has led to useful

approaches in supervised classification and in dimension reduction.
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2.4.1 Fisher discriminant analysis

The main goal of Fisher was to find a linear subspace that separates the classes according

to a criterion (see [14] for more details). For this, Fisher assumes that the dimensionality p

of the original space is greater than the number K of classes. Fisher discriminant subspace

looks for a linear transformation U which projects the observations in a discriminant and low

dimensional subspace of dimension d such that the linear transformation U of dimension p× d

aims to maximize a criterion which is large when the between-class covariance matrix (SB)

is large and when the within-covariance matrix (SW ) is small. Four different criteria can be

found in the literature which verify such a constraint (see [19] for a review). The criterion

which is traditionally used is:

J(U) = tr
(

(U tSWU)−1U tSBU
)

,

where tr(.) is the trace operator and:

SW =
1

n

K
∑

k=1

∑

i∈Ck

(yi −mk)
T (yi −mk)

SB =
1

n

K
∑

k=1

nk(mk − ȳ)T (mk − ȳ)

are respectively the within and the between covariance matrices, mk = 1
nk

∑K
i∈Ck

yi is the

empirical mean of the observations yi in the class k and ȳ = 1
n

∑K
k=1 nkmk is the mean of the

observations. This criterion has to be maximized to reach the solution expected by Fisher

and the solution of this optimization problem is the eigenvectors associated to the K − 1

largest eigenvalues of the matrix S−1
W SB . Once the discriminative axes determined, linear

discriminant analysis (LDA) is usually applied to classify the data into this subspace.

2.4.2 Regularization of Fisher discriminant analysis

The optimization of the Fisher criterion supposes the non singularity of the matrix SW but

it appears that the singularity of SW occurs frequently, particularly in the case of very high

dimensional space or in the case of under-sampled problems. In the literature, different solu-

tions are proposed to deal with such a problem in a supervised classification framework. The

regularized discriminant analysis (RDA), proposed by Friedman [18], suggests that the covari-

ance matrix depends on two regularized parameters ; the pseudo-inverse LDA [19] proposes

to use the pseudo-inverse of the within covariance matrix and also the penalized discrimi-

nant analysis (PDA) [23] which deals with high correlated variables or under-sampled cases.

More recently, Howland [26] used the generalized singular value decomposition (GSVD) to

overcome the singularity problem of the pooled scatter matrix (SW ) in using a special shape

of the within and between covariance matrices and Zhang [52] improves this approach es-

6



pecially in the case of small observations but large set of variables. An other approach has

been suggested by Jin et al. [28], namely the uncorrelated LDA (ULDA) approach, to deal

with under-sampled problems and has the property that the features in the reduced space are

uncorrelated.

2.4.3 Extension to unsupervised classification: discriminative clustering

Since clustering approaches are sensitive to high-dimensional and noisy data, recent works

focused on combining low dimensional discriminative subspace with one of the most used

clustering algorithm: kmeans. The proposed methods iteratively compute a discriminative

subspace based on the Fisher criterion given the previous partition and obtains a new partition

by kmeans subject to this subspace. The first basic algorithm has been proposed by Xu et

al. [49] and has then been extended by De la Torre [32] who develops a discriminative cluster

analysis (DCA) method in the case of non invertible scatter matrix. A theoretical framework

is suggested by Ding in [13] when both tasks perform simultaneously since Fisher discriminant

analysis and kmeans clustering optimize the same objective function. More recently, Ye et

al. [51] reformulate the iterative problem of clustering in discriminative subspace and they

show that the iterative subspace selection and kmeans clustering is equivalent to kernel kmeans

task with a specific kernel Gram matrix. However, these approaches do not really compute

the discriminant subspace and are not interested in the visualization and the understanding

of the data.

3 Model-based clustering in a discriminative subspace

This section introduces a mixture model, called the discriminative latent mixture model, which

ambitions to find both a parsimonious and discriminative fit for the data in order to ease the

clustering and the visualization of the clustered data. The modeling proposed in this section

is mainly based on two key-ideas: firstly, actual data are assumed to live in a latent subspace

with an intrinsic dimension lower than the dimension of the observed data and, secondly, a

subspace of K − 1 dimensions is theoretically sufficient to discriminate K groups.

3.1 The discriminative latent mixture model

Let {y1, . . . , yn} ∈ R
p denote a dataset of n observations that one wants to cluster into K

homogeneous groups, i.e. adjoin to each observation yj a value zj ∈ {1, . . . ,K} where zi = k

indicates that the observation yi belongs to the kth group. On the one hand, let us assume

that {y1, . . . , yn} are independent observed realizations of a random vector Y ∈ R
p and that

{z1, . . . , zn} are also independent realizations of a random vector Z ∈ {1, . . . ,K}. On the

other hand, let E ⊂ R
p denote a latent space assumed to be the most discriminative subspace

of dimension d = K− 1 such that 0 ∈ E and where d is strictly lower than the dimension p of
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the observed space. Moreover, let {x1, . . . , xn} ∈ E denote the actual data, described in the

latent space E of dimension d, which are in addition presumed to be independent unobserved

realizations of a random vector X ∈ E. Finally, for each group, the observed variable Y ∈ R
p

and the latent variable X ∈ E are assumed to be linked through a linear transformation:

Y|Z=k = UX + ε, (3.1)

where d < p, U is the p × d orthogonal matrix such as UTU = Id and ε ∈ R
p is a centered

Gaussian noise term with covariance matrix Ψk, for k = 1, ...,K:

ε|Z = k ∼ N (0,Ψk).

Following the classical framework of model-based clustering, each group is in addition assumed

to be distributed according to a Gaussian density function within the latent space E. Hence,

the random vector X ∈ E has the following conditional density function:

X|Z = k ∼ N (µk,Σk),

where µk ∈ R
d and Σk ∈ R

d×d are respectively the mean and the covariance matrix of the kth

group. Since the latent space E is assumed to have an orthonormal basis, Σk is a diagonal

matrix and can be written Σk = diag(αk1, ..., αkd). With these assumptions and conditionally

to X and Z, the random vector Y ∈ R
d has the following conditional distribution:

Y |X,Z = k ∼ N (Uµk,Ψk),

and its marginal distribution is therefore a mixture of Gaussians:

f(y) =
K
∑

k=1

πkφ(y;mk, Sk),

where πk is the mixture proportion of the kth group and:

mk = Uµk,

Sk = UΣkU
T + Ψk,

are respectively the mean and the covariance matrix of the kth group in the observation space.

Let us also define W = [U, V ] a p × p matrix which verifies W TW = WW T = Ip and for

which V is the orthonormal complement of U defined above. We finally assume that the noise
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π = {π1, ..., πK} µk ∈ E

Σk = diag(αk1, ..., αkd)

W = [U, V ]

ε
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Figure 1: Graphical summary of the DLM[αkjβk] model

covariance matrix Ψk is such that ∆k = W TSkW has the following form:

∆k =
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










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



(p− d)

This model, called the discriminative latent mixture (DLM) model and referred to by

DLM[αkjβk] in the sequel, is summarized by Figure 1. The DLM[αkjβk] model is therefore

parametrized by the parameters πk, µk, U , αkj and βk, for k = 1, ...,K and j = 1, ..., d. On

the one hand, the mixture proportions π1, ..., πK and the means µ1, ..., µK parametrize in a

classical way the prior probability and the average latent position of each group respectively.

On the other hand, U defines the latent subspace E by parametrizing its orientation according

to the basis of the original space. Finally, αk1, ..., αkd parametrize the variance of the kth group

within the latent subspace E whereas βk parametrizes the variance of this group outside E.

With these notations and from a practical point of view, the variance of the actual data is

therefore modeled by αk1, ..., αkd and the variance of the noise is modeled by βk.

3.2 The submodels of the DLM[αkjβk] model

Starting with the DLM[αkjβk] model presented in the previous paragraph, several submodels

can be generated by applying constraints on parameters of the diagonal matrix ∆k. For in-
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Model Nb. of parameters K = 4 and p = 100

DLM[αkjβk] (K − 1) +Kp+ (K − 1)(p −K/2) +K2 713

DLM[αkjβ] (K − 1) +Kp+ (K − 1)(p −K/2) +K(K − 1) + 1 710

DLM[αkβk] (K − 1) +Kp+ (K − 1)(p −K/2) + 2K 705

DLM[αkβ] (K − 1) +Kp+ (K − 1)(p −K/2) +K + 1 702

DLM[αjβk] (K − 1) +Kp+ (K − 1)(p −K/2) + (K − 1) +K 704

DLM[αjβ] (K − 1) +Kp+ (K − 1)(p −K/2) + (K − 1) + 1 701

DLM[αβk] (K − 1) +Kp+ (K − 1)(p −K/2) +K + 1 702

DLM[αβ] (K − 1) +Kp+ (K − 1)(p −K/2) + 2 698

Full-GMM (K − 1) +Kp+Kp(p+ 1)/2 20603

Com-GMM (K − 1) +Kp+ p(p + 1)/2 5453

Mixt-PPCA (K − 1) +Kp+K(d(p − (d+ 1)/2) + d+ 1) + 1 4228 (d = 10)

Diag-GMM (K − 1) +Kp+Kp 803

Sphe-GMM (K − 1) +Kp+K 407

Table 1: Number of free parameters to estimate for the DLM models and some classical
models (see text for details).

stance, the p−d last values of ∆k can be assumed to be common for the k classes, i.e. βk = β,

∀k = 1, ...,K, meaning that the variance outside the discriminant subspace is common to all

groups. This assumption can be viewed as modeling the noise variance with a unique pa-

rameter which seems natural for data obtained in a common acquisition process. Following

the notation system introduces above, this submodel will be referred to by DLM[αkjβ]. The

variance within the latent subspace E can also be assumed to be isotropic for each group

and the associated submodel is DLM[αkβk]. In this case, the variance of the data is assumed

to be isotropic both within E and outside E. Similarly, it is possible to constrain the pre-

vious model to have the parameters βk common between classes and this gives rise to the

model DLM[αkβ]. Finally, the variance within the subspace E can be assumed to be indepen-

dent from the mixture component and this corresponds to the models DLM[αjβk], DLM[αjβ],

DLM[αβk] and DLM[αβ]. We therefore enumerate 8 different DLM models and an overview of

them is proposed in Table 1. The table also gives the number of free parameters to estimate

according to K and p for the 8 DLM models and for some classical models. The Full-GMM

model refers to the classical Gaussian mixture model with full covariance matrices, the Com-

GMM model refers to the Gaussian mixture model for which the covariance matrices are

assumed to be equal to a common covariance matrix (Sk = S, ∀k), Diag-GMM refers to
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the Gaussian mixture model for which Sk = diag(s2k1, ..., s
2
kp) with s2k ∈ R

p and Sphe-GMM

refers to the Gaussian mixture model for which Sk = s2kIp with s2k ∈ R. Finally, Mixt-PPCA

denotes the subspace clustering model proposed by Tipping and Bishop in [46]. In addition

to the number of free parameters to estimate, Table 1 gives this number for specific values of

K and p in the right column. The number of free parameters to estimate given in the cen-

tral column can be decomposed in the number of parameters to estimate for the proportions

(K−1), for the means (Kp) and for the covariance matrices (last terms). Among the classical

models, the Full-GMM model is a highly parametrized model and requires the estimation of

20603 parameters when K = 4 and p = 100. Conversely, the Diag-GMM and Sphe-GMM

model are very parsimonious models since they respectively require the estimation of only

803 and 407 parameters when K = 4 and p = 100. The Com-GMM and Mixt-PPCA models

appear to both have an intermediate complexity. However, the Mixt-PPCA model is a less

constrained model compared to the Diag-GMM model and should be preferred for clustering

high-dimensional data. Finally, the DLM models turn out to have a low complexity whereas

their modeling capacity is comparable to the one of the Mixt-PPCA model. In addition, the

complexity of the DLM models depends only from K and p whereas the Mixt-PPCA model

depends from an hyper-parameter d.

3.3 Links with existing models

At this point, some links can be established with models existing in the literature. The closest

models have been proposed in [5], [9] and [38]. First, in [9], the authors proposed a family of

28 parsimonious and flexible Gaussian models ranging from a very general model, referred to

as [akjbkQkdk], to very simple models. Among this family of parsimonious models, 14 models

assume that the orientation of the group-specific subspaces is common (common Qk). In

particular, this work can be viewed as an extension of the mixture of principal component an-

alyzer (Mixt-PPCA) model [46]. The following year, McNicholas and Murphy [38] proposed as

well a family of 8 parsimonious Gaussian models by extending the mixture of factor analyzers

(MFA) model [37, 42] by constraining the loading and error variance matrices across groups.

Let us remark that the two families of parsimonious Gaussian models share some models: for

instance, the model UUC of [38] corresponds to the model [akjbkQkd] of [9]. Among the 8

parsimonious models presented in [38], 4 models have the loading matrices constrained across

the groups. More recently, Beak et al. [5] proposed as well a MFA model with a common

loading matrix. All these parsimonious Gaussian models share the assumption that the group

subspaces have a common orientation and are therefore close to the DLM models presented

in this work. However, these models with common loadings choose the orientation such as

the variance of the projected data is maximum whereas the DLM models choose the latent

subspace orientation such as it best discriminates the groups. This specific feature of the

DLM models should therefore improve in most cases both the clustering and the visualization

of the results.
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4 Parameter estimation: the Fisher-EM algorithm

This section introduces an estimation procedure which adapts the traditional EM algorithm

for estimating the parameters of DLM models presented in the previous section. Due to

the nature of the models described above, the Fisher-EM algorithm alternates between three

steps:

• an E step in which posterior probabilities that observations belong to the K groups are

computed,

• a F step which estimates the orientation matrix U of the discriminative latent space

conditionally to the posterior probabilities,

• a M step in which parameters of the mixture model are estimated in the latent subspace

by maximizing the conditional expectation of the complete likelihood.

This estimation procedure relative to the DLM models is called hereafter the Fisher-EM

algorithm. We chose to name this estimation procedure after Sir R. A. Fisher since the key-

idea of the F step comes from his famous work on discrimination. The remainder of this section

details the simple form of this procedure. Let us however notice that the Fisher-EM algorithm

can be also used in combination with the stochastic [10] and classification versions [11] of the

EM algorithm.

4.1 The E step

This step aims to compute, at iteration (q), the expectation of the complete log-likelihood

conditionally to the current value of the parameter θ(q−1), which, in practice, resumes to

the computation of t
(q)
ik = E[zik|yi, θ

(q−1)]. Let us also recall that t
(q)
ik is as well the posterior

probability that the observation yi belongs to the kth component of the mixture. The following

proposition provides the explicit form of t
(q)
ik , for i = 1, ..., n, k = 1, ...,K. Demonstration of

this result is detailed in Appendix A.1.

Proposition 1. With the assumptions of the DLM models, the posterior probabilities t
(q)
ik ,

i = 1, ..., n, k = 1, ...,K, can be expressed as :

t
(q)
ik =

1
∑k

l=1 exp
(

1
2(Γ

(q−1)
k (y) − Γ

(q−1)
l (y))

) ,

with:

Γ
(q−1)
k (yi) = ||P (yi −m

(q−1)
k )||2Dk

+
1

β
(q−1)
k

||(yi −m
(q−1)
k ) − P (yi −m

(q−1)
k )||2

+

d
∑

j=1

log(α
(q−1)
kj ) + (p − d) log(β

(q−1)
k ) − 2 log(π

(q−1)
k ) + γ,

(4.1)
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Figure 2: Two groups and their 1-dimensional discriminative subspace.

where ||.||2Dk
is a norm on the latent space E defined by ||y||2Dk

= yTDky, Dk = W̃∆−1
k W̃ T ,

W̃ is a p × p matrix containing the d vectors of U (q−1) completed by zeros such as W̃ =

[U (q−1), 0p−d], P is the projection operator on the latent space E, i.e. P (y) = U (q−1)U (q−1)ty,

and γ = p log(2π) is a constant term.

Besides its computational interest, Proposition 1 provides as well a comprehensive inter-

pretation of the cost function Γk which mainly governs the computation of tik. Indeed, it

appears that Γk mainly depends on two distances: the distance between the projections on

the discriminant subspace E of the observation yi and the mean mk on the one hand, and,

the distance between the projections on the complementary subspace E
⊥ of yi and mk on the

other hand. Remark that the latter distance can be reformulated in order to avoid the use

of the projection on E
⊥. Indeed, as Figure 2 illustrates, this distance can be re-expressed ac-

cording projections on E. Therefore, the posterior probability tik = P (zik = 1|yi) will be close

to 1 if both the distances are small which seems quite natural. Obviously, these distances are

also balanced by the variances in E and E
⊥ and by the mixture proportions. Furthermore,

the fact that the E step does not require the use of the projection on the complementary

subspace E
⊥ is, from a computational point of view, very important because it will provide

the stability of the algorithm and will allow its use when n << p (cf. paragraph 4.5).

13



4.2 The F step

This step aims to determinate, at iteration (q), the discriminative latent subspace of dimension

d = K − 1 in which the K groups are best separated. Naturally, the estimation of this latent

subspace has to be done conditionally to the current values of posterior probabilities t
(q)
ik

which indicates the current fuzzy partition of the data. Estimating the discriminative latent

subspace E
(q) resumes to the computation of d discriminative axes. Following the original idea

of Fisher [15], the d axes which best discriminate the K groups are those which maximize the

traditional criterion J(U) = tr((U tSBU)−1U tSWU). However, the traditional criterion J(U)

assume that the data are complete (supervised classification framework). Unfortunately, the

situation of interest here is the one of the unsupervised classification and the matrices SB and

SW have therefore to be defined conditionally to the current fuzzy partition. Furthermore,

the DLM models assume that the discriminative latent subspace must have an orthonormal

basis and, sadly, the traditional Fisher’s approach provides correlated discriminative axes.

To overcome both problems, this paragraph proposes a procedure which keeps the key-idea

of Fisher while providing orthonormal discriminative axes conditionally to the current fuzzy

partition of the data. The procedure follows the concept of the orthonormal discriminant

vector (ODV) method introduced by [16] in the supervised case and then extended by [21,

22, 33, 50], which sequentially selects the most discriminative features in maximizing the

Fisher criterion subject to the orthogonality of features. First, it is necessary to introduce

the fuzzy between-covariance matrix S
(q)
B and the fuzzy within-covariance matrix S

(q)
W . The

fuzzy between-covariance matrix S
(q)
B is defined conditionally to the posterior probabilities

t
(q)
ik , obtained in the E step, as follows:

S
(q)
B =

1

n

K
∑

k=1

n
(q)
k (m̂

(q)
k − ȳ)T (m̂

(q)
k − ȳ),

where n
(q)
k =

∑n
i=1 t

(q)
ik , m̂

(q)
k = 1

n

∑n
i=1 t

(q)
ik yi is the fuzzy mean of the kth group at iteration

q and ȳ = 1
n

∑n
i=1 yi is the empirical mean of the whole dataset. Since the relation S =

S
(q)
W +S

(q)
B holds in this context as well, it is preferable from a computational point of view to

use the covariance matrix S = 1
n

∑n
i=1(yi−ȳ)(yi−ȳ)

T of the whole dataset in the maximization

problem instead S
(q)
W since S remains fixed over the iteration. The F step of the Fisher-EM

therefore aims to solve the following optimization problem:







max
U

tr
(

(UTSU)−1UTS
(q)
B U

)

,

wrt uT
j ul = 0, ∀j 6= l ∈ {1, . . . , d},

where uj is the jth column vector of U . Following the ODV procedure, the d axes solution

of this optimization problem are iteratively constructed by, first, computing an orthogonal

complementary subspace to the current set of discriminative axes and, then, maximizing the

14



Fisher criterion in this orthogonal subspace. To initialize this iterative procedure, the first

vector of U is obtained using the traditional maximization of the Fisher criterion and u1 is

therefore the eigenvector associated with the largest eigenvalue of the matrix S−1S
(q)
B . Then,

assuming that the r− 1 first orthonormal discriminative axes {u1, . . . , ur−1}, which span the

space Br−1, have been computed, the rth discriminative axis has to lie in the subspace Br

orthogonal to the space Br−1. The Gram-Schmidt orthonormalization procedure allows to

find a basis V r = {vr, vr+1, ..., vd} for the orthogonal subspace Br such that:

vl = αl(Iℓ−1 −
ℓ−1
∑

j=1

vjv
T
j )ψl, ℓ = r, . . . , p

where vj = uj for j = 1, ..., r − 1, αℓ is normalization constant such that ||uℓ|| = 1 and ψℓ is

a vector linearly independent of uj ∀j ∈ {1, . . . , ℓ − 1}. Then, the rth discriminative axis is

given by:

ur =
Pr−1u

max
r

||umax
r ||

,

where Pr−1 is the projector on Br−1, umax
r is the eigenvector associated with the largest

eigenvalue of the matrix S−1
r S

(q)
Br with:

Sr = V rTSV r,

S
(q)
Br = V rTS

(q)
B V r,

i.e. Sr and S
(q)
Br are respectively the covariance and fuzzy between-covariance matrices of

the data projected into the orthogonal subspace Br. This iterative procedure stops when the

d = K − 1 orthonormal discriminative axes uj are computed.

4.3 The M step

This third step estimates the model parameters by maximizing the conditional expectation of

the complete likelihood. The following proposition provides the expression of the conditional

expectation of the complete log-likelihood in the case of the DLM[αkjβk] model. Demonstration

of this result is provided in Appendix A.2

Proposition 2. In the case of the DLM[αkjβk] model, the conditional expectation of complete

log-likelihood Q(y1, . . . , yn, θ) has the following expression:

Q(y1, . . . , yn, θ) = −
1

2

K
∑

k=1

nk

[

−2 log(πk) +

d
∑

j=1

(

log(αkj) +
uT

j Ckuj

αjk

)

+ (p− d) log(βk) +
1

βk

p
∑

j=d+1

vT
j Ckvj + γ

]

.

(4.2)
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where Ck is the empirical covariance matrix of the kth group, uj is the jth column vector of

U , vj is the jth column vector of V , nk =
∑n

i=1 tik and γ = p log(2π) is a constant term.

At iteration q, the maximization of Q conduces to an estimation of the mixture proportions

πk and the means µk for the K components by their empirical counterparts:

π̂
(q)
k =

nk

n
,

µ̂
(q)
k =

1

nk

n
∑

i=1

t
(q)
ik U

(q)T yi,

where nk =
∑n

i=1 t
(q)
ik and U (q) contains, as columns vectors, the d discriminative axes u

(q)
j ,

j = 1, ..., d, provided by the F step at iteration q. The following proposition provides estimates

for the remaining parameters for the 8 DLM models which have to be updated at each iteration

of the FEM procedure. Demonstrations of the following results are given in Appendix A.2.

Proposition 3. At iteration q, the estimates for variance parameters of the 8 DLM models

are:

• Model DLM[αkjβk]:

α̂
(q)
kj = u

(q)T
j C

(q)
k u

(q)
j , (4.3)

β̂
(q)
k =

tr(C
(q)
k ) −

∑d
j=1 u

(q)T
j C

(q)
k u

(q)
j

p− d
, (4.4)

• Model DLM[αkjβ]:

α̂
(q)
kj = u

(q)T
j C

(q)
k u

(q)
j , (4.5)

β̂(q) =
tr(C(q)) −

∑d
j=1 u

(q)T
j C(q)u

(q)
j

p− d
, (4.6)

• Model DLM[αkβk]:

α̂
(q)
k =

1

d

d
∑

j=1

u
(q)T
j C

(q)
k u

(q)
j , (4.7)

β̂
(q)
k =

tr(C
(q)
k ) −

∑d
j=1 u

(q)T
j C

(q)
k u

(q)
j

p− d
, (4.8)
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• Model DLM[αkβ]:

α̂
(q)
k =

1

d

d
∑

j=1

u
(q)T
j C

(q)
k u

(q)
j , (4.9)

β̂(q) =
tr(C(q)) −

∑d
j=1 u

(q)T
j C(q)u

(q)
j

p− d
, (4.10)

• Model DLM[αjβk]:

α̂
(q)
j = u

(q)T
j C(q)u

(q)
j , (4.11)

β̂
(q)
k =

tr(C
(q)
k ) −

∑d
j=1 u

(q)T
j C

(q)
k u

(q)
j

p− d
, (4.12)

• Model DLM[αjβ]:

α̂
(q)
j = u

(q)T
j C(q)u

(q)
j , (4.13)

β̂(q) =
tr(C(q)) −

∑d
j=1 u

(q)T
j C(q)u

(q)
j

p− d
, (4.14)

• Model DLM[αβk]:

α̂(q) =
1

d

d
∑

j=1

u
(q)T
j C(q)u

(q)
j , (4.15)

β̂
(q)
k =

tr(C
(q)
k ) −

∑d
j=1 u

(q)T
j C

(q)
k u

(q)
j

p− d
, (4.16)

• Model DLM[αβ]:

α̂(q) =
1

d

d
∑

j=1

u
(q)T
j C(q)u

(q)
j , (4.17)

β̂(q) =
tr(C(q)) −

∑d
j=1 u

(q)T
j C(q)u

(q)
j

p− d
, (4.18)

where the vectors u
(q)
j are the discriminative axes provided by the F step at iteration q, C

(q)
k =

1

n
(q)
k

∑n
i=1 t

(q)
ik (yi − m̂

(q)
k )T (yi − m̂

(q)
k ) is the fuzzy covariance matrix of the kth group, m̂

(q)
k =

1
n

∑n
i=1 t

(q)
ik yi and finally C = 1

n

∑K
k=1 nkCk is the fuzzy within-covariance matrix of the K

groups.
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4.4 Initialization and model selection

Since the Fisher-EM procedure presented in this work belongs to the family of EM-based

algorithms, the Fisher-EM algorithm can inherit the most efficient strategies for initialization

and model selection from previous works on the EM algorithm.

Initialization Although the EM algorithm is widely used, it is also well-known that the

performance of the algorithm is linked to its initial conditions. Several strategies have been

proposed in the literature for initializing the EM algorithm. A popular practice [8] executes the

EM algorithm several times from a random initialization and keep only the set of parameters

associated with the highest likelihood. The use of kmeans or of a random partition are

also standard approaches for initializing the algorithm. McLachlan and Peel [36] have also

proposed an initialization through the parameters by generating the mean and the covariance

matrix of each mixture component from a multivariate normal distribution parametrized by

the empirical mean and empirical covariance matrix of the data. In practice, this latter

initialization procedure works well but, unfortunately, it can not be applied directly to the

Fisher-EM algorithm since model parameters live in a space different from the observation

space. A simple way to adapt this strategy could be to first determine a latent space using

PCA and then simulate mixture parameters in this initialization latent space.

Model selection In model-based clustering, it is frequent to consider several models in

order to find the most appropriate model for the considered data. Since a model is defined by

its number of component K and its parametrization, model selection allows to both select a

parametrization and a number of components. Several criteria for model selection have been

proposed in the literature and the famous ones are penalized likelihood criteria. Classical

tools for model selection include the AIC [2], BIC [44] and ICL [7] criteria. The Bayesian

Information Criterion (BIC) is certainly the most popular and consists in selecting the model

which penalizes the likelihood by γ(M)
2 log(n) where γ(M) is the the number of parameters in

model M and n is the number of observations. On the other hand, the AIC criterion penalizes

the log-likelihood by γ(M) whereas the ICL criterion add the penalty
∑n

i=1

∑K
k=1 tik log(tik)

to the one of the BIC criterion in order to favor well separated models. The value of γ(M) is

of course specific to the model selected by the practician (cf. Table 1). In the experiments of

the following sections, the BIC criterion is used because of its popularity but the ICL criterion

should also be well adapted in our context.

4.5 Practical and numerical considerations

The DLM models, for which the Fisher-EM algorithm has been proposed as an estimation

procedure, presents several practical and numerical interests among which the ability to deal

with the so-called n≪ p problem and to interpret the discriminative axes.
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Use and interpretation of the discriminative axes The first and natural use of the

discriminative axes may certainly be the visualization of the clustered data. Indeed, it is

nowadays clear that the visualization help human operators to understand the results of an

analysis. With the Fisher-EM algorithm, it is easy to project and visualize the cluster data

into the estimated discriminative latent subspace. Beyond this natural interest, it may be

useful from a practical point of view to interpret the d = K−1 estimated discriminative axes,

i.e. u1, ..., ud with the notations of the previous sections. The main interest for the practician

would be to figure out which original dimensions are the most discriminative. This can be

done by looking at the matrix U which contains u1, ..., ud as column vectors. In the classical

framework of factor analysis, this matrix is known as the loading matrix (the discriminative

axes u1, ..., ud are the loadings). The loadings link the discriminative latent space with the

original observation space and allow to calculate the correlation between the discriminative

axes and the original variables. Indeed, the correlation between the jth discriminative axes uj ,

j = 1, ..., d, and the ℓth original variable vl is given by cjl =
√

λjujl where λj is the eigenvalue

associated with uj. Thus, it is possible to find the most discriminative original variables by

selecting the the highest correlated original variables with the discriminative axes. Let us

finally remark that finding the most discriminative original variables is of particular interest

in application fields, such as biology or economics, where the observed variables have an actual

meaning.

Dealing with the n≪ p problem Another important and frequent problem when cluster-

ing high-dimensional data is known as high dimension and low sample size (HDSS) problem

or the n ≪ p problem (we refer to [25, Chap. 18] for an overview). The n ≪ p problem

refers to situations where the number of features p is larger than the number of available

observations n. This problem occurs frequently in modern scientific applications such as ge-

nomics or mass spectrometry. In such cases, the estimation of model parameters for generative

clustering methods is either difficult or impossible. This task is indeed very difficult when

n≪ p since generative methods require, in particular, to invert covariance matrices which are

ill-conditioned in the best case or singular in the worst one. In contrast with other generative

methods, the Fisher-EM procedure can overcome the n ≪ p problem. Indeed, the E and M

steps of Fisher-EM do not require the determination of the last p−d columns of W (see equa-

tions (4.1) and (4.3)–(4.18)) and, consequently, it is possible to modify the F step to deal with

situations where n≪ p. To do so, let Ȳ denote the centered data matrix and T denote, as be-

fore, the fuzzy partition matrix. We define in addition the weighted fuzzy partition matrix T̃

where the jth column T̃j of T̃ is the jth column Tj of T divided by nj =
∑n

i=1 tij. With these

notations, the between covariance matrix B can be written in its matrix form B = Ȳ tT̃ tT̃ Ȳ

and the F step aims to maximize, under orthogonality constraints, the following function:

f(U) = tr
(

(U tȲ tȲ U)−1U tȲ tT̃ tT̃ Ȳ U
)

. (4.19)
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It follows from the classical result of kernel theory, the Representer theorem, that this max-

imization can be done in a different space and that U can be expressed as U = Ȳ H where

H ∈ R
n×p. Therefore, the F step reduces to maximize, under orthogonality constraints, the

following function:

f(H) = tr
(

(HtGGH)−1HtGT̃ tT̃GH
)

, (4.20)

where G = Ȳ Ȳ t is the n × n Gram matrix. The solution U∗ of (4.19) can be obtained

afterward from the solution H∗ of (4.20) by multiplying it by Ȳ . Thus, the F step reduces

to the eigendecomposition under orthogonality constraints of a n × n matrix instead of a

p× p matrix. This procedure is useful for the Fisher-EM procedure only because it allows to

determine d ≤ n axes which are enough for Fisher-EM but not for other generative methods

which require the computation of the p axes.

5 Experimental results

This section presents experiments on simulated and real datasets in order to highlight the

main features of the clustering method introduced in the previous sections.

5.1 An introductory example: the Fisher’s irises

Since we chose to name the clustering algorithm proposed in this work after Sir R. A. Fisher,

the least we can do is to first apply the Fisher-EM algorithm to the iris dataset that Fisher

used in [15] as an illustration for his discriminant analysis. This dataset, in fact collected by

E. Anderson [4] in the Gaspé peninsula (Canada), is made of three groups corresponding to

different species of iris (setosa, versicolor and virginica) among which the groups versicolor

and virginica are difficult to discriminate (they are at least not linearly separable). The

dataset consists of 50 samples from each of three species and four features were measured

from each sample. The four measurements are the length and the width of the sepal and the

petal. This dataset is used here as an introductory example because of the link with Fisher’s

work but also of its popularity in the clustering community.

In this first experiment, Fisher-EM has been applied to the iris data (of course, the labels

have been used only for performance evaluation) and the Fisher-EM results will be com-

pared to the ones obtained in the supervised case with the orthogonal linear analysis method

(OLDA) [50]. The left panel of Figure 3 stands for the projection of the irises in the esti-

mated discriminative space with Fisher-EM and the right panel shows the evolution of the

log-likelihood on 25 iterations until convergence. First of all, it can be observed that the

estimated latent space discriminates almost perfectly the three different groups. For this ex-

periment, the clustering accuracy has reached 98% with the DLM[αkβ] model of Fisher-EM.

Secondly, the right panel shows the monotony of the evolution of the log-likelihood and the

convergence of the algorithm to a stationary state. Table 2 presents the confusion matrices for
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Figure 3: Projection of clustered Iris data into the latent discriminative subspace with Fisher-
EM (left) and evolution of the associated log-likelihood (right).

OLDA Fisher-EM

cluster cluster

class 1 2 3 class 1 2 3

Setosa 50 0 0 Setosa 50 0 0

Versicolor 0 48 2 Versicolor 0 47 3

Virginica 0 1 49 Virginica 0 0 50

Misclassification rate = 0.02 Misclassification rate = 0.02

Table 2: Confusion tables for the iris data with OLDA method (supervised) and Fisher-EM
(unsupervised).

OLDA Fisher-EM

axis axis
variable 1 2 1 2

sepal length 0.209 0.044 -0.203 -0.108
sepal width 0.386 0.665 -0.422 0.088
petal length -0.554 -0.356 0.602 0.736
petal width -0.707 0.655 0.646 -0.662

Table 3: Fisher axes estimated in the supervised case (OLDA) and in the unsupervised case
(Fisher-EM).
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Figure 4: Visualization of the simulated data: data in their latent space (left) and data
projected on the first principal components (right).

the partitions obtained with supervised and unsupervised classification methods. OLDA has

been used for the supervised case (reclassification of the learning data) whereas Fisher-EM

has provided the clustering results. One can observe that the obtained partitions induced by

both methods is almost the same. This confirms that Fisher-EM has correctly modeled both

the discriminative subspace and the groups within the subspace. It is also interesting to look

at the loadings provided by both methods. Table 3 stands for the linear coefficients of the

discriminative axes estimated, on the one hand, in the supervised case (OLDA) and, on the

other hand, in the unsupervised case (Fisher-EM). The first axes of each approach appear

to be very similar and the scalar product of these axes is −0.996. This highlights the per-

formance of the Fisher-EM algorithm in estimating the discriminative subspace of the data.

Furthermore, according to these results, the 3 groups of irises can be mainly discriminated by

the petal size meaning that only one axis would be sufficient to discriminate the 3 iris species.

Besides, this interpretation turns out to be in accordance with the recent work of Trendafilov

and Joliffe [47] on variable selection in discriminant analysis via the LASSO.

5.2 Simulation study: influence of the dimension

This second experiment aims to compare with traditional methods the stability and the ef-

ficiency of the Fisher-EM algorithm in partitioning high dimensional data. Fisher-EM is

compared here with the standard EM algorithm (Full-GMM) and its parsimonious models

(Diag-GMM, Sphe-GMM and Com-GMM), the EM algorithm applied in the first compo-

nents of PCA explaining 90% of the total variance (PCA-EM), the kmeans algorithm and the

mixture of probabilistic principal component analyzers (Mixt-PPCA). For this simulation, 600
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Figure 5: Influence of the dimension of the observed space on the correct classification rate
for Full-GMM, PCA-EM, Com-GMM, Mixt-PPCA, kmeans, Diag-GMM, Sphe-GMM and
Fisher-EM algorithms.

observations have been simulated following the DLM[αkjβk] model proposed in Section 3. The

simulated dataset is made of 3 unbalanced groups and each group is modeled by a Gaussian

density in a 2-dimensional space completed by orthogonal dimensions of Gaussian noise. The

transformation matrix W has been randomly simulated such as W TW = WW T = Ip and, for

this experience, the dimension of the observed space varies from 5 to 100. The left panel of

Figure 4 shows the simulated data in their 2-dimensional latent space whereas the right panel

presents the projection of 50-dimensional observed data on the two first axes of PCA in the

observed space. As one can observe, the representation of the data on the two first principal

components is actually not well suited for clustering these data while it exists a representation

which discriminates perfectly the three groups. Moreover, to make the results of each method

comparable, the same randomized initialization has been used for the 8 algorithms. The

experimental process has been repeated 20 times for each dimension of the observed space

in order to see both the average performances and their variances. Figure 5 presents the

evolution of the clustering accuracy of each method (EM, PCA-EM, kmeans, Mixt-PPCA,

Fisher-EM, Diag-GMM, Sphe-GMM and Com-GMM) according to the data dimensionality

and Figure 6 presents their respective boxplots. First of all, it can be observed that the Full-

GMM, PCA-EM and Com-GMM have their performances which decrease quickly when the

dimension increases. In fact, the Full-GMM model does not work upon the 15th dimension

and still remains unstable in a low dimensional space as well as the Com-GMM model. Sim-
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Figure 6: Boxplots of Full-GMM, PCA-EM, Com-GMM, Mixt-PPCA, kmeans, Diag-GMM,
Sphe-GMM and Fisher-EM algorithms.
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ilarly, the performances of PCA-EM fall down as the 10th dimension. This can be explained

by the fact that the latent subspace provided by PCA does not allow to well discriminate

the groups, as already suggested by Figure 4. However, the PCA-EM approach can be used

whatever the dimension is whereas Full-GMM can not be used as the 20th dimension because

of numerical problems linked to singularity of the covariance matrices. Moreover, their box-

plots show a large variation on the clustering accuracy. Secondly, Sphe-GMM, Diag-GMM

and kmeans present the same trend with high performances in low-dimensional spaces which

decrease until they reach a clustering accuracy of 0.75. Diag-GMM seems however to resist a

little bit more than kmeans to the dimension increasing. Mixt-PPCA and Mclust both follow

the same tendency as the previous methods but from the 30th dimension their performances

fall down until the clustering accuracy reaches 0.50. The poor performances of Mixt-PPCA

can be explained by the fact that Mixt-PPCA models each group in a different subspace

whereas the model used for simulating the observations assumes a common discriminative

subspace. Finally, Fisher-EM appears to be more efficient than the other methods and, more

importantly, it remains very stable while the data dimensionality increases. Furthermore, the

boxplot associated with the Fisher-EM results suggests that it is a steady algorithm which

succeeds in finding out the discriminative latent subspace of the data even with random

initializations.

5.3 Simulation study: BIC criterion

This last experiment on simulations aims to study the performance of BIC for both model and

component number selection. For this experiment, 4 Gaussian components have been simu-

lated according to the DLM[αk ,β] model in a 3-dimensional space completed by 17 orthogonal

dimensions of Gaussian noise. The transformation matrix W has been again randomly simu-

lated such as W TW = WW T = Ip. Table 4 presents the BIC values for the family of DLM

models and, in a comparative purpose, the BIC values for 7 other methods already used in the

last experiments: EM with the Full-GMM, Diag-GMM, Sphe-GMM and Com-GMM models,

Mixt-PPCA, Mclust (with its most adapted model for these data) and PCA-EM. Moreover,

BIC is computed for different partition numbers varying between 2 and 6 clusters. First of

all, one can observe that the BIC values linked to the models which are different from the

DLM model are very low compared to the DLM models. This suggests that the models which

best fit the data are the DLM models. Secondly, only some DLM models, those which assume

a different variance between each cluster such as DLMαkjβk
,DLMαkjβ,DLMαkβk

and DLMαkβ,

select the right number of components (K = 4). The other methods either over-estimate the

number of clusters, such as Mclust, or under-estimate it. BIC has the smaller value for the

DLMαkβ model with 4 components which is actually the model used for simulating the data.

Finally, the right-hand side of Figure 7 presents the projection of the data on the discrimi-

nant subspace of 3 dimensions estimated by Fisher-EM with the DLMαkβ model whereas the

left-hand side figure represents the projection of the data on the 3 first principal components
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of PCA. As one can observe, in the PCA case, the axes separate only 2 groups, which is in

accordance with the model selection pointed out by BIC for this method. Conversely, in the

Fisher-EM case, the 3 discriminative axes separate well the 4 groups and such a representation

could clearly help the practician in understanding the clustering results.

5.4 Real data set benchmark

This last experimental paragraph will focus on comparing on real-world datasets the efficiency

of Fisher-EM with several linear and nonlinear existing methods, including the most recent

ones. On the one hand, Fisher-EM will be compared to the 8 already used clustering meth-

ods: EM with the Full-GMM, Diag-GMM, Sphe-GMM and Com-GMM models, Mixt-PPCA,

Mclust (with its most adapted model for these data), PCA-EM and kmeans. On the other

hand, the new Fisher-EM challengers will be kmeans computed on the two first components

of PCA (PCA-kmeans), an heteroscedastic factor mixture analyzer (HMFA) method [39] and

three discriminative versions of kmeans: LDA-kmeans [13], Diskmeans and DisCluster (see [51]

for more details). The comparison has been made on 6 different benchmark datasets coming

mostly from the UCI machine learning repository:

• The chironomus data contain 148 larvae which are split up into 3 species and described

by 17 morphometric attributes. This dataset is described in detailed in [39].

• The wine dataset is composed by 178 observations which are split up into 3 classes and

characterized by 13 variables.

• The iris dataset which is made of 3 different groups and described by 4 variables. This

dataset has been described in detail in Section 5.1.

• The zoo dataset includes 7 families of 101 animals characterized by 16 variables.

• The glass data are composed by 214 observations belonging to 6 different groups and

described by 7 variables.

• Finally, the 4435 satellite images are split up into 6 classes and are described by 36

variables.

Table 5 presents the average clustering accuracies obtained for the 8 DLM models and for the

methods already used in the previous experiments. The results for the 14 first methods of the

table have been obtained by averaging 20 trials with random initializations. Similarly, Table 6

provides the clustering accuracies found in the literature for the recent methods on the same

datasets. It is important to notice that the results of Table 6 have been obtained in slightly

different benchmarking situations. Missing values in Table 5 are due to non convergence of the

algorithms whereas missing values in Table 6 are due to the unavailability of the information

for the concerned method. First of all, one can remark that Fisher-EM outperforms the
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number of components

methods 2 3 4 5 6

DLMαkjβk
-83.419 -83.231 -82.967 -83.404 -83.352

DLMαkjβ -83.750 -83.275 -82.971 -83.398 -83.885

DLMαkβk
-83.419 -83.239 -82.970 -83.596 -84.136

DLMαkβ -83.750 -83.536 -82.956 -83.616 -84.082
DLMαjβk

-84.782 -85.219 -85.557 -86.113 -86.416
DLMαjβ -84.764 -85.189 -85.668 -86.208 -86.230

DLMαβk
-84.782 -85.313 -85.914 -86.309 -86.607

DLMαβ -84.764 -85.467 -85.910 -86.516 -86.793

Full-GMM -5012.136 -7532.103 -10063.559 -12628.357 -15143.680
Com-GMM -1866.557 -2091.528 -2317.083 -2543.283 -2770.033
Mixt-PPCA -4932.571 -7319.903 -9707.076 -12093.666 -14481.251
Diag-GMM -940.067 -1418.939 -1902.644 -2384.809 -2873.094
Sphe-GMM -613.337 -931.568 -1244.007 -1564.471 -1885.092

PCA-EM -3341.966 -5024.925 -6715.415 -8416.745 -10115.715
Mclust[EEE] -166.956 -167.083 -167.180 -167.366 -165.962

Table 4: BIC values for model selection.

Projection on the 3 first principal components Projection on the discriminative axes estimated by Fisher-EM

V2

V3

V1

V2

V3

V1

Figure 7: Projection of the data in the 3 first principal components of PCA (left) and in the
discriminant subspace estimated by Fisher-EM with the DLM[αkβ].
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Method chironomus wine iris zoo glass satimage

DLMαkjβk
0.860 0.955 0.893 0.682 0.439 0.665

DLMαkjβ 0.987 0.942 0.906 0.782 0.387 0.657

DLMαkβk
0.887 0.955 0.960 0.752 - 0.628

DLMαkβ 0.987 0.943 0.980 0.697 0.372 0.649
DLMαjβk

0.836 0.942 0.827 0.717 0.320 0.621

DLMαjβ 0.897 0.932 0.667 0.802 0.385 0.662

DLMαβk
0.836 0.954 0.793 0.718 0.320 0.552

DLMαβ 0.897 0.966 0.800 0.776 0.385 0.586

Full-GMM 0.445 0.911 0.766 - 0.377 0.486
Sphe-GMM 0.760 0.721 0.894 0.732 0.373 0.629
Diag-GMM 0.899 0.943 0.854 - - 0.647
Comm-GMM 0.548 0.725 0.530 - 0.403 0.266
Mixt-PPCA 0.604 0.494 0.688 0.512 0.385 0.438

Mclust 0.979 0.971 0.966 0.584 0.415 0.656
(Model name) (EEE) (VVI) (VEV) (EII) (VEV) (VVV)

PCA-EM 0.741 0.910 0.600 0.623 0.391 0.538

kmeans 0.951 0.959 0.866 0.722 0.434 0.502

Table 5: Clustering accuracies on the UCI datasets averaged on 20 trials.

Method chironomus wine iris zoo glass satimage

PCA-kmeans [13] - 0.702 0.887 0.792 0.472 -

LDA-kmeans [13] - 0.826 0.980 0.842 0.510 -

Diskmeans [51] - - - - - 0.651

DisCluster [51] - - - - - 0.642

HMFA [39] 0.987 - - - - -

Table 6: Clustering accuracies on UCI datasets found in the literature (these results have
been obtained with slightly different experimental setups).
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other methods for most of the UCI datasets such as chironomus, wine, iris, zoo and satellite

image datasets. Concerning the glass dataset, the LDA+kmeans presents apparently the best

performances compared to the other methods. However, the results of LDA+kmeans have to

be qualified since they were obtained by averaging only 5 trials. Finally, it is interesting from

a practical point of view to notice that some DLM models work well in most situations. In

particular, the DLM[.β] models, in which the variance outside the discriminant subspace is

common to all groups, provide very satisfying results for all the datasets considered here.

6 Application to mass spectrometry

In this last experimental section, the Fisher-EM procedure is applied to the problem of cancer

detection using MALDI mass spectrometry. MALDI mass spectrometry is a non invasive

biochemical technique which is useful in searching for disease biomarkers, assessing tumor

progression or evaluating the efficiency of drug treatment, to name just a few applications.

In particular, a promising field of application is the early detection of the colorectal cancer,

which is one of the principal causes of cancer-related mortality, and MALDI imaging could in

few years avoid in some cases the colonoscopy method which is invasive and quite expensive.

6.1 Data and experimental setup

The MALDI2009 dataset has been provided by Theodore Alexandrov from the Center for

Industrial Mathematics (University of Bremen, Germany) and is made of 112 spectra of

length 16 331. Among the 112 spectra, 64 are spectra from patients with the colorectal

cancer (referred to as cancer hereafter) and 48 are spectra from healthy persons (referred to

as control). Each of the 112 spectra is a high-dimensional vector of 16 331 dimensions which

covers the mass-to-charge (m/z) ratios from 960 to 11 163 Da. For further reading, the dataset

is presented in detail and analyzed in a supervised classification framework in [3].

Following the experimental protocol of [3], Fisher-EM was applied on the 6 168 dimen-

sions corresponding to m/z ratios between 960 and 3 500 Da since there is no discriminative

information on the reminder. Figure 8 shows the mean spectra of the cancer and control

classes estimated by Fisher-EM on the m/z interval 900–3500 Da. To be able to compare

the clustering results of Fisher-EM, PCA-EM and mixture of PPCA (Mixt-PPCA) have been

applied to this subset as well. It has been asked to all methods to cluster the dataset into 2

groups. It is important to remark that this clustering problem is a n≪ p problem and, among

the model-based methods, only these three methods are able to deal with it (see Section 4.5).

6.2 Experimental results

Table 7 presents the confusion tables computed from the clustering results of PCA-EM, mix-

ture of PPCA and Fisher-EM. On the one hand, PCA-EM has selected d = 4 principal axes
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Figure 8: Estimated mean spectra of the cancer class (up) and of the control class (bottom)
on the m/z interval 900–3500 Da.

PCA-EM

Cluster

Class Cancer Control

Cancer 48 16
Control 1 47

Misclassification rate = 0.15

Mixt-PPCA

Cluster

Class Cancer Control

Cancer 62 2
Control 10 38

Misclassification rate = 0.11

Fisher-EM

Cluster

Class Cancer Control

Cancer 57 7
Control 3 45

Misclassification rate = 0.09

Table 7: Confusion tables for PCA-EM (left), mixture of PPCA (center) and Fisher-EM
(right).
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with the 90% variance rule before to cluster the data in this subspace and mixture of PPCA

has selected d = 2 principal axes for each group. On the other hand, Fisher-EM has estimated

the discriminative latent subspace with d = K − 1 = 1 axis to cluster this high-dimensional

dataset. It first appears that PCA-EM and mixture of PPCA provide satisfying clustering re-

sults on such a complex dataset. However, it is disappointing to see that the PCA-EM make a

significant number of false negatives (cancers classified as non-cancers) since the classification

risk is not symmetric here. Conversely, mixture of PPCA and Fisher-EM provide a better

clustering results both from a global point of view (respectively 89% and 91% of clustering

accuracy) and from a medical point of view since Fisher-EM makes significantly less false

negatives with an acceptable number of false positives.

More importantly, Fisher-EM provides informations which can be interpreted a posteriori

to better understand both the data and the phenomenon. Indeed, the values of the estimated

loading matrix U , which is a 6 168 × 1 matrix here, expressed the correlation between the

discriminative subspace and the original variables. It is therefore possible to identify the

original variables with the highest power of discrimination. It is important to highlight that

Fisher-EM extracts these informations from the data in a unsupervised framework. Figure 9

shows the correlation between each original variable and the discriminative subspace on an

arbitrary scale. The peaks of this curve correspond to the original variables which have a high

correlation with the discriminative axis estimated by Fisher-EM.

Figure 10 plots the difference between the mean spectra of the classes cancer and control

(cancer - control) and indicates as well, using red triangles, the most discriminative original

variables (m/z values). It is not surprising to see that original variables where the cancer and

control spectra have a big difference are among the most discriminative. More surprisingly,

Fisher-EM selects the original variables with m/z values equal to 2800 and 3050 as discrim-

inative variables whereas the difference between cancer and control spectra is less for these

variables than the difference on the variable with m/z value equal to 1350. Such information,

which have extracted from the data in a unsupervised framework, may help the practician to

understand the clustering results.

7 Conclusion and further works

This work has presented a discriminative latent mixture model which models the data in a

latent orthonormal discriminative subspace with an intrinsic dimension lower than the dimen-

sion of the original space. A family of 8 parsimonious DLM models has been exhibited by

constraining model parameters within and between groups. An estimation algorithm, called

the Fisher-EM algorithm, has been also proposed for estimating both the mixture parameters

and the latent discriminative subspace. The determination procedure for the discriminative

subspace adapts the well-known Fisher criterion to the unsupervised classification context

under an orthonormality constraint. Furthermore, when the number of groups is not too
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Figure 9: Discrimination power of the original variables: correlation between original variables
and the discriminative subspace on an arbitrary scale.
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Figure 10: Difference between the mean spectra of the classes cancer and control (cancer -
control) and most discriminative variables (indicated by red triangles).
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large, the estimated discriminative subspace allows a useful projection of the clustered data.

Experiments on simulated and real datasets have shown that Fisher-EM outperforms existing

clustering methods. The Fisher-EM algorithm has been also applied to the clustering of mass

spectrometry data, which is a real-world and complex application. In this specific context,

Fisher-EM has shown its ability to both efficiently cluster high-dimensional mass spectrometry

data and give a pertinent interpretation of the results.

Among the possible extensions of this work, it could be first interesting to find a way to

visualize in 2D or 3D the clustered data when the estimated discriminative subspace has more

than 4 dimensions. Another extension could be to consider a kernel version of Fisher-EM. For

this, it would be necessary to replace the Gram matrix introduced in Section 4.5 by a kernel.

Finally, it could be also interesting to introduce sparsity in the loading matrix through L1

penalty.

A Appendix

In order not to surcharge the notations, the index q of the current iteration of the Fisher-EM

algorithm is not indicated in the following demonstrations. We also define the matrices W̃

and W̄ such that W = W̃ + W̄ . The matrix W̃ is defined as a p× p matrix containing the d

first vectors of W completed by zeros such as W̃ = [U, 0p−d] and W̄ = W − W̃ is defined by

W̄ = [0d, V ].

A.1 E step

Proof of Proposition 1. The conditional expectation tik = E[zik|yi,Θ] can be viewed as well

as the posterior probability of the observation yi given a group k and, thanks to the Bayes’

formula, can be written:

tik =
πkφ(yi, θk)

∑K
k=1 πkφ(yi, θk)

,

where φ is the Gaussian density, and πk and θk are the parameters of the kth mixture compo-

nent estimated in the previous iteration. This posterior probability tik can also be formulated

from the cost function Γk such that:

tik =
1

∑k
l=1 exp

(

1
2(Γk(yi) − Γl(yi))

) ,

where Γk(yi) = −2 log(πkφ(yi, θk)). According to the assumptions of the DLM models and

given that W = W̃ + W̄ , Γk can be reformulated as:

Γk(yi) = (yi −mk)
T W̃∆−1

k W̃ T (yi −mk) + (yi −mk)
T W̄∆−1

k W̄ T (yi −mk)

+ log(|∆k|) − 2 log(πk) + log(2π),
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Moreover, since the relations W̃ (W̃ T W̃ ) = W̃ and W̄ (W̄ T W̄ ) = W̄ hold due to the construc-

tion of W̃ and W̄ , then:

Γk(yi) = (yi −mk)
T W̃ W̃ T W̃∆−1

k W̃ T W̃ W̃ T (yi −mk)

+ (yi −mk)
T W̄W̄ T W̄∆−1

k W̄ T W̄W̄ T (yi −mk)

+ log(|∆k|) − 2 log(πk) + log(2π),

and:

Γk(yi) =
(

W̃ W̃ T (yi −mk)
)T

W̃∆−1
k W̃ T

(

W̃W̃ T (yi −mk)
)

+
1

βk

(

W̄W̄ T (yi −mk)
)T (

W̄ W̄ T (yi −mk)
)

+ log(|∆k|) − 2 log(πk) + log(2π).

Let us now define ϑk = W̃∆−1
k W̃ T and ||.||ϑk

, a norm on the latent space spanned by W̃ ,

such that ||y||2ϑk
= yTϑky. With these notations, Γk can be rewritten as:

Γk(yi) = ||W̃ W̃ T (yi −mk)||
2
ϑk

+
1

βk
||W̄ W̄ T (yi −mk)||

2

+ log(|∆k|) − 2 log(πk) + log(2π),

and, according to the definition of ∆k:

Γk(yi) = ||W̃ W̃ T (yi −mk)||
2
ϑk

+
1

βk
||W̄ W̄ T (yi −mk)||

2

+

d
∑

j=1

log(αjk) + (p− d) log(βk) − 2 log(πk) + log(2π).

Let us also define the projection operators P and P⊥ on the subspaces E and E
⊥ respectively:

• P (y) = W̃W̃ T y is the projection of y on the discriminative space E,

• P⊥(y) = W̄W̄ T y is the projection of y on the complementary space E
⊥.

Consequently, the cost function Γk can be finally reformulated as:

Γk(yi) = ||P (yi −mk)||
2
ϑk

+
1

βk
||P⊥(yi −mk)||

2

+

d
∑

j=1

log(αjk) + (p− d) log(βk) − 2 log(πk) + log(2π).

Since P⊥(y) = y − P (y), then the distance associated with the complementary subspace can

be rewritten as ||P⊥(yi −mk)||
2 = ||(yi −mk)−P (yi −mk)||

2 and this allow to conclude.
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A.2 M step

Proof of Proposition 2. In the case of the model DLM[αkjβk], at iteration q, the conditional ex-

pectation of the complete log-likelihood Q(y1, . . . , yn, θ|θ
(q−1)) of the observed data {y1, . . . , yn}

has the following form:

Q(θ) =

n
∑

i=1

K
∑

k=1

tik log(πkφ(yi, θk))

=
n
∑

i=1

K
∑

k=1

tik

[

−
1

2
log(|Sk|) −

1

2
(yi −mk)

TS−1
k (yi −mk) + log(πk) + γ

]

,

where tik = E[zik|θ
(q−1)] and γ = p log(2π) is a constant term. According to the definitions

of the diagonal matrix ∆k and of the orientation matrix W for which W−1 = W T , the inverse

covariance matrix S−1
k of Y can be written as:

S−1
k = (W∆kW

T )−1 = W−T∆−1
k W−1 = W∆−1

k W T .

The determinant of Sk can be also reformulated in the following way:

|Sk| = |∆k| =
d
∏

j=1

αkj

p
∏

j=d+1

βk =
d
∏

j=1

αjkβ
p−d
k .

Consequently, the Q(θ) can be rewritten as:

Q(θ) = −
1

2

K
∑

k=1

nk

[

−2 log(πk) +

d
∑

j=1

log(αkj) + (p− d) log(βk)

+
1

nk

n
∑

i=1

zik(yi −mk)
TW∆−1

k W T (yi −mk) + γ
]

.

(A.1)

where nk =
∑n

i=1 zik. At this point, two remarks can be done on the quantity
∑n

i=1 zik(yi −

mk)
TW∆−1

k W T (yi −mk). First, as this quantity is a scalar, it is equal to its trace. Secondly,

this quantity can be divided in two parts since W = [U, V ] and W = W̃ + W̄ . Then, the

relation W∆−1
k W T = W̃∆−1

k W̃ T + W̄∆−1
k W̄ T is stated and we can write:

(yi −mk)
TW∆−1

k W T (yi −mk) = tr
(

(yi −mk)
T W̃∆−1

k W̃ T (yi −mk)
)

+ tr
(

(yi −mk)
T W̄∆−1

k W̄ T (yi −mk)
)

.

35



Moreover, pointing out that Ck =
∑n

i=1 zik(yi − mk)
T (yi −mk) is the empirical covariance

matrix the kth group, the previous quantity can be rewritten as:

n
∑

i=1

zik(yi −mk)
TW∆−1

k W T (yi −mk) = tr(∆−1
k W̃ TCkW̃ ) + tr(∆−1

k W̄ TCkW̄ )

and finally:

n
∑

i=1

zik(yi −mk)
TW∆−1

k W T (yi −mk) =

d
∑

j=1

uT
j Ckuj

αkj
+

p
∑

j=d+1

vT
j Ckvj

βk
,

where uj , respectively vj , is the jth column vector of U , respectively V . Consequently,

replacing this quantity in (A.1) provides the final expression of Q(θ).

Proof of Proposition 3. The maximization of Q(θ) conduces for the DLM models to the fol-

lowing estimates.

Estimation of πk The prior probability πk of the group k can be estimated by maximizing

Q(θ) with respect to the constraint
∑K

k=1 πk = 1 which is equivalent to maximize the Lagrange

function:

L = Q(θ) + λ

(

K
∑

k=1

πk − 1

)

,

where λ is the Lagrange multiplier. Then, the partial derivative of L according to πk is:

∂L

∂πk
=
nk

πk
+ λ.

Consequently:

∀k = 1, . . . ,K
∂L

∂πk
= 0 ⇐⇒

nk

πk
+ λ = 0 ⇐⇒ nk + λπk = 0,

and:
K
∑

k=1

(nk + λπk) = n+ λ = 0 =⇒ λ = −n.

Replacing λ by its value in the partial derivative conduces to an estimation of πk by:

π̂k =
nk

n
.

Estimation of µk The mean µk of the kth group in the latent space can be also estimated

by maximizing the expectation of the complete log-likelihood, which can be written in the
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following way:

Q(θ) =

n
∑

i=1

K
∑

k=1

tik

[

−
1

2
log(|Sk|) −

1

2
(yi − Uµk)

T Σ−1
k (yi − Uµk) + log(πk)

]

+ γ.

Consequently, the partial derivative of Q according to µk is:

∂Q(θ)

µk
=

n
∑

i=1

tikU
T (yi − Uµk).

Setting this quantity to 0 gives:

∂Q(θ)

µk
= 0 ⇐⇒

n
∑

i=1

tikU
T yi =

n
∑

i=1

tikµk.

and conduces to:

µ̂k =
1

nk

n
∑

i=1

tikU
T yi.

Model DLM[αkjβk] The partial derivative of Q according to αkj is:

∂Q(θ)

αkj
=

1

αkj
−
uT

j Ckuj

α2
kj

,

and setting ∂Q(θ)
αkj

to 0 provides the estimate of αkj:

α̂kj = uT
j Ckuj . (A.2)

The estimation of βk is also obtained by maximizing Q subject to βk. However, since W̄ =

W − W̃ , it is possible to write:

nk

βk

p
∑

j=d+1

wT
j Ckwj =

nk

βk

p
∑

j=1

wT
j Ckwj −

nk

βk

d
∑

j=1

uT
j Ckuj

=
nk

βk

p
∑

j=1

tr(wjw
T
j Ck) −

nk

βk

d
∑

j=1

uT
j Ckuj

=tr
(nk

n
Ck

)

−
nk

βk

d
∑

j=1

uT
j Ckuj

=
nk

βk

[

tr(Ck) −
d
∑

j=1

uT
j Ckuj

]

.
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Hence:

∂Q(θ)

βk

= 0 ⇐⇒
p− d

βk

−
tr(Ck)

β2
k

+
1

β2
k

d
∑

j=1

uT
j Ckuj = 0,

and it is possible to conclude:

β̂k =
tr(Ck) −

∑d
j=1 u

T
j Ckuj

p− d
. (A.3)

Model DLM[αkjβ] In this case, the variance outside the discriminant subspace is common

to all groups and the Q(θ) has the following form:

Q(θ) = −
1

2

(

K
∑

k=1

nk

[

−2 log(πk) +

d
∑

j=1

(

log(αkj) +
uT

j Ckuj

αkj

)

+ γ
]

+

K
∑

k=1

nk(p− d) log(β) +

K
∑

k=1

nk

β

[

tr(Ck) −
d
∑

j=1

uT
j Ckuj

])

,

= −
1

2

(

K
∑

k=1

nk

[

−2 log(πk) +

d
∑

j=1

(

log(αkj) +
uT

j Ckuj

αkj

)

+ γ
]

+ n(p− d) log(β) +
1

β

[

K
∑

k=1

tr(nkCk) −
d
∑

j=1

K
∑

k=1

uT
j nkCkuj

])

,

= −
1

2

(

K
∑

k=1

nk

[

−2 log(πk) +
d
∑

j=1

(

log(αkj) +
uT

j Ckuj

αkj

)

+ γ
]

+ n(p− d) log(β) +
1

β

[

ntr(C) − n
d
∑

j=1

uT
j Cuj

])

,

where C is the empirical covariance matrix of the whole dataset. Setting to 0 the partial

derivative of Q(θ) conditionally to β implies:

∂Q(θ)

β
= 0 ⇐⇒

p− d

β
−

1

β2
tr(C) +

1

β2

d
∑

j=1

uT
j Ckuj = 0,

and this conduces to:

β̂ =
1

p− d



tr(C) −
d
∑

j=1

uT
j Ckuj



 . (A.4)

The estimation of αkj have been already considered above and is given by Equation (A.2).
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Model DLM[αkβk] For this model, the expectation of the complete log-likelihood Q(θ) has

the following form:

Q(θ) = −
1

2

K
∑

k=1

nk

[

−2 log(πk) +

d
∑

j=1

(

log(αk) +
uT

j Ckuj

αk

)

+ (p− d) log(βk) +
1

βk

p
∑

j=d+1

vT
j Ckvj + γ

]

,

Q(θ) = −
1

2

K
∑

k=1

nk

[

−2 log(πk) + d log(αk) +
1

αk

d
∑

j=1

uT
j Ckuj

+ (p− d) log(βk) +
1

βk

p
∑

j=d+1

vT
j Ckvj + γ

]

.

The partial derivative of Q(θ) according to αk is:

∂Q(θ)

αk
=

d

αk
−

1

α2
k

d
∑

j=1

uT
j Ckuj ,

and, setting this quantity to 0, provides:

α̂k =
1

d

d
∑

j=1

uT
j Ckuj . (A.5)

On the other hand, the estimation of βk is the same as in Equation (A.3).

Model DLM[αkβ] The estimations of αk and β are respectively provided by Equations (A.5)

and (A.4).
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Model DLM[αjβk] In this case, Q(θ) has the following form:

Q(θ) = −
1

2

K
∑

k=1

nk

(

−2 log(πk) +
d
∑

j=1

(

log(αj) +
uT

j Ckuj

αj

)

+ (p− d) log(βk) +
1

βk

p
∑

j=d+1

vT
j Ckvj + γ

)

,

Q(θ) = −
1

2

(

K
∑

k=1

nk

[

−2 log(πk)
]

+

K
∑

k=1

nk

d
∑

j=1

log(αj) +

d
∑

j=1

K
∑

k=1

uT
j (nkCk)uj

αj

+
K
∑

k=1

nk

[

(p− d) log(βk) +
1

βk

p
∑

j=d+1

vT
j Ckvj + γ

])

,

Q(θ) = −
1

2

(

K
∑

k=1

nk

[

−2 log(πk)
]

+ n

d
∑

j=1

log(αj) + n

d
∑

j=1

uT
j Cuj

αj

+
K
∑

k=1

nk

[

(p− d) log(βk) +
1

βk

p
∑

j=d+1

vT
j Ckvj + γ

])

.

The partial derivative of Q(θ) according to αj is:

∂Q(θ)

αj
=

1

αj
−

1

α2
j

uT
j Cuj,

and ∂Q(θ)
αj

= 0 implies:

α̂j = uT
j Cuj. (A.6)

Model DLM[αjβ] The estimations of αj and β are respectively provided by Equations (A.6)

and (A.4).
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Model DLM[αβk] In this case, Q(θ) has the following form:

Q(θ) = −
1

2

K
∑

k=1

nk

(

−2 log(πk) + d log(α) +
1

α

d
∑

j=1

uT
j Ckuj+

+ (p− d) log(βk) +
1

βk

p
∑

j=d+1

vT
j Ckvj + γ

)

,

Q(θ) = −
1

2

(

K
∑

k=1

nk[−2 log(πk)] +

K
∑

k=1

nkd log(α) +
1

α

d
∑

j=1

K
∑

k=1

nku
T
j Ckuj

+
K
∑

k=1

nk

[

(p − d) log(βk) +
1

βk

p
∑

j=d+1

vT
j Ckvj + γ

])

,

Q(θ) = −
1

2

(

K
∑

k=1

nk[−2 log(πk)] + n log(α) +
n

α

d
∑

j=1

uT
j Cuj

+

K
∑

k=1

nk

[

(p − d) log(βk) +
1

βk

p
∑

j=d+1

vT
j Ckvj + γ

])

,

The partial derivative of Q(θ) according to α is:

∂Q(θ)

α
=
d

α
−

1

α2

d
∑

j=1

uT
j Cuj,

and, setting this quantity to 0, we end up with:

α̂ =
1

d

d
∑

j=1

uT
j Cuj . (A.7)

The estimation of βk is the same as in Equation (A.3).

Model DLM[αβ] The estimations of α and β have been already computed and are provided

by Equations (A.7) and (A.4).
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