Almost periodic solutions of monotone second-order differential equations

Abstract : We give sufficient conditions for the existence of almost periodic solutions of the following second-order differential equation: u′′(t) = f(u(t)) + e(t) on a Hilbert space H, where the vector field f : H −→ H is monotone, continuous and the forcing term e : R −→ H is almost periodic. Notably, we state a result of existence and uniqueness of the Besicovitch almost periodic solution, then we approximate this solution by a sequence of Bohr almost periodic solutions.
Type de document :
Article dans une revue
advanced nonlinear studies, 2011, 11 (3), pp.541-554
Liste complète des métadonnées

https://hal-paris1.archives-ouvertes.fr/hal-00560960
Contributeur : Moez Ayachi <>
Soumis le : lundi 31 janvier 2011 - 13:17:19
Dernière modification le : jeudi 11 janvier 2018 - 06:25:42

Identifiants

  • HAL Id : hal-00560960, version 1

Citation

Moez Ayachi, Joël Blot, Philippe Cieutat. Almost periodic solutions of monotone second-order differential equations. advanced nonlinear studies, 2011, 11 (3), pp.541-554. 〈hal-00560960〉

Partager

Métriques

Consultations de la notice

142