On the poset of computation rules for nonassociative calculus

Abstract : The symmetric maximum, denoted by $\svee$, is an extension of the usual maximum $\vee$ operation so that 0 is the neutral element, and $-x$ is the symmetric (or inverse) of $x$, i.e., $x\svee(-x)=0$. However, such an extension does not preserve the associativity of $\vee$. This fact asks for systematic ways of parenthesing (or bracketing) terms of a sequence (with more than two arguments) when using such an extended maximum. We refer to such systematic (predefined) ways of parenthesing as computation rules. As it turns out there are infinitely many computation rules each of which corresponding to a systematic way of bracketing arguments of sequences. Essentially, computation rules reduce to deleting terms of sequences based on the condition $x\svee(-x)=0$. This observation gives raise to a quasi-order on the set of such computation rules: say that rule 1 is below rule 2 if for all sequences of numbers, rule 1 deletes more terms in the sequence than rule 2. In this paper we present a study of this quasi-ordering of computation rules. In particular, we show that the induced poset of all equivalence classes of computation rules is uncountably infinite, has infinitely many maximal elements, has infinitely many atoms, and it embeds the powerset of natural numbers ordered by inclusion.
Type de document :
Article dans une revue
Order, Springer Verlag, 2013, pp.269-288
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00787750
Contributeur : Michel Grabisch <>
Soumis le : mercredi 13 février 2013 - 11:59:19
Dernière modification le : mardi 27 mars 2018 - 11:48:05
Document(s) archivé(s) le : mardi 14 mai 2013 - 04:01:10

Fichier

order11-2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00787750, version 1

Collections

Citation

Miguel Couceiro, Michel Grabisch. On the poset of computation rules for nonassociative calculus. Order, Springer Verlag, 2013, pp.269-288. 〈hal-00787750〉

Partager

Métriques

Consultations de la notice

444

Téléchargements de fichiers

133