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The notion of “philosophy of chemistry” challenges the singular in the phrase 

“philosophy of science”, which is the standard term for the discipline in the English 

language. This linguistic peculiarity has undoubtedly favored the tacit equation 

science = physics that has characterized mainstream philosophy of science during the 

course of the twentieth-century. The hegemony of physics has had profound 

consequences that have subsequently become identifiable. One of them is the increasing 

gap between philosophical reflection and science in action. As Joachim Schummer has 

pointed out: “Had those philosophers without prejudice gone into the laboratories, then 

they would have stumbled on chemistry almost everywhere”1. For there is a striking 

contrast between the philosophers’ neglect of chemistry and the quantitative data, which 

show that chemistry is by far the largest scientific discipline in terms of the number of 

publications indexed by the major journals of abstracts. Thus, philosophers have 

virtually ignored the major part of scientific activity choosing instead to focus on 

theoretical physics, which seemed more appropriate in light of the “linguistic turn”. 

The situation is slightly different in the European tradition. The plural “philosophie 

des sciences” which has prevailed in the French language may be due to 

Auguste Comte’s longstanding influence, since he strongly advocated a regional 

epistemology. The result is that chemistry has not been totally neglected. As I have 

argued elsewhere, chemistry helped shape the French tradition, especially in what can 

be labeled its “historical turn” and its focus on theories of matter2. Whether French 

philosophers interacted more with active scientists than their Anglo-Saxon counterparts 
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or shared the scientists’ interests remains a matter of debate for historians of the 

philosophy of science.  

 After decades of neglect of chemistry in mainstream philosophy of science, 

however, the late twentieth century witnessed an impressive revival of philosophical 

interest in the discipline. Philosophy of chemistry has become a dynamic research field, 

establishing itself as a sub-discipline in the 1990s. An International Society for the 

Philosophy of Chemistry, founded in 1997, has organized an annual summer 

conference. Two journals have been launched, Hyle in 1995 and Foundations of 

Chemistry in 1999. Chemists and chemistry teachers have been the prime movers 

behind this renaissance of the philosophy of chemistry. For them, the hegemony of 

physics in the philosophy of science resonated with the reductionist ambitions of 

quantum physicists, who denied the very existence of any independent theoretical 

foundations of chemistry. For chemistry teachers, Paul Dirac’s famous 1929 claim that 

“the underlying physical laws necessary for the mathematical theory of a large part of 

physics and the whole of chemistry are thus completely known”, had always been a 

trauma, as it meant that their discipline could be taught as a sort of applied physics3. 

Their concern with the philosophical implications of Dirac’s statement was not shared 

by working chemists, who knew that the reductionist research agenda was impossible to 

achieve because the calculations would always be too complex. However, when digital 

computers allowed ab initio calculations, theoretical chemists started to worry once 

again about reductionism and became more interested in philosophy. Chemists felt the 

need to demonstrate that chemical concepts could not be deduced from quantum 

mechanical principles, giving rise to a flood of technical publications about 

reductionism in the 1980s.4. Chemists, advocates of the autonomy of their discipline, 

tend to use philosophy as a battlefield for their heroic struggle against the imperialism 

of quantum physics. As a consequence, reductionism and foundational issues have been 

the main concern over the last decade. Subtle conceptual distinctions became strategic 

to limit the dominion of quantum mechanics over chemistry: “quantitative reduction” 

does not mean “conceptual reduction”, “ontological dependence” does not imply 

“epistemic dependence”5. The notion of supervenience referring to asymmetric 

dependence has been envisaged as a possible substitute for the notion of reduction6. In 

this perspective, only a few aspects of chemistry – such as the interpretation of the 
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periodic system – have drawn philosophical attention, while concepts and practices in 

daily use by laboratory chemists have been overlooked. Ironically the overwhelming 

concern with reductionism threatens to lead to a reduction of the emerging field of 

philosophy of chemistry to theoretical issues. If this trend continues, chemistry would 

paradoxically be bound in philosophical allegiance to physics, condemned to spend its 

existence ruminating over Dirac’s arrogant claim. 

 It is time for philosophers to face up to what is the most evident feature of 

chemistry, that it is not only a natural science but also a cornucopia of material 

technologies. Explaining and modeling are just two of its many facets. Chemistry is also 

about making, testing, measuring, improving yields… The dual face of chemistry 

demands a specific philosophical approach. It is not enough to revisit philosophical 

notions that have been sanctified in the context of a tradition of philosophy of science 

that has modeled its categories around theoretical physics. Indeed, to try to 

accommodate these notions to chemistry understood in its entirety is a hopeless task. 

 Chemistry needs a philosophy of its own. A number of French philosophers – 

Pierre Duhem, Émile Meyerson, Hélène Metzger – have paved the way for such an 

approach. In particular, Gaston Bachelard has suggested an alternative philosophy that 

he termed “metachemistry”7. Bachelard’s aim in The Philosophy of No, was to describe 

a new trend in science embracing non-Euclidian geometries, non-Aristotelian logics, 

non-Cartesian physics, non-Lavoisierain chemistry. The prefix “non” means i) that 

today’s science is not the continuation of the past and rather questions and challenges 

established knowledge through a polemical process; ii) the non-sciences are not 

however negations of past theories and rather include them as particular cases in a 

dialectical process. Since Bachelard’s aim was to promote a new updated “scientific 

spirit” rather than digging into the singularity of the philosophy of chemistry, here I will 

try to explore what Alfred Nordmann presented as “the promise of metachemistry”8. 

This aim cannot be achieved without a move away from the “linguistic turn” that has 

prevailed in the logical-positivist tradition, aligning instead with the “practical turn” that 

characterizes more recent philosophical trends.9 In this respect, I am merely following a 

path opened by Roald Hoffmann, Nobel laureate for chemistry in 1981, and adding a 

historical dimension to his philosophical essays10. I will first consider the impact of 
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laboratory practices on chemical explanations and theories, before turning my attention 

to the issue of the ontological burden of chemistry. 

 

 

KNOWING THROUGH MAKING 

 

Any philosophical examination of chemistry should take into account the fact that 

chemistry is and always has been a laboratory science. The word “laboratory” itself, 

originally referred to the place where chemists worked and only gradually spread to 

include the spaces used for other kinds of experimental practice. Frederic Larry Holmes, 

a leading historian of eighteenth-century chemistry, insisted on the importance of this 

physical setting: 

 
The problems and objects of study of chemistry have been provided by and limited by the operations 
that could be performed on materials in a chemical laboratory […]. As theoretical structures 
changed and new objectives supplemented or displaced older ones, the stable setting of the chemical 
laboratory both identified chemists and distinguished them from other natural philosophers who 
dealt with some of the same phenomena that concerned them11.  

 

This physical niche determines both the object of chemical investigation and a 

specific way of knowing that is the chemists’. As the etymology of the term reminds us, 

the laboratory is a place of labour, of manual work rather than of inductive or deductive 

reasoning. The practice of chemistry is as much a physical activity as a mental exercise. 

Joan Baptista Van Helmont used to say that “God sells the arts in return for sweat”, 

meaning that knowledge of nature was to be obtained only at the cost of painstaking 

experiments12.  Chemists attempt to know substances by transforming them by means of 

manipulations and physical operations. Whatever the importance of chemical theory, 

chemistry is first and foremost concerned with making. Historically it was an art and 

craft before it became an academic science.13 Nowadays, if we look at scientometric 

studies, we can see that making new molecules remains a major part of the work found 

in academic publications14.  

 Historically, chemistry provided the grounds for criticizing the esprit de système, 

embodied by scholars “speechifying” in their doctoral robes. As an illustration, we can 

cite Diderot’s blistering offensive launched against speculative and abstract knowledge 

in De l’interprétation de la nature, an attack echoed in Gabriel François Venel’s heroic 
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portrait of the chemist as an “artist”, in his article “chymie” in the Encyclopédie15. More 

recently, Roald Hoffmann has written: 

 
The reliable knowledge gained of the molecular world came from the hot and cool work of our 
hands and mind combined. Sensory data, yes, but we did not wait for Scanning Tunnelling 
Microscopes to show us molecules; we gleaned their presence, their stoichiometry, the connectivity 
of the atoms in them and eventually their metrics, shapes and dynamics by indirect experiments16. 

 

Indeed, “indirect” may be a key word for understanding the chemists’ way of 

knowing nature. They use the detour of the laboratory to access nature. This does not 

simply mean that they use the mediation of instruments to understand natural 

phenomena, like experimental physicists do. Rather, they take mediating practices much 

further by insisting that only man-made, artificial products provide information about 

natural substances. To know the nature and properties of substances, chemists proceed 

by analysis and synthesis. Since the Renaissance, decomposition or the resolution of 

bodies into their components, combined with recomposition or the recombination of the 

purported components to give the original substance, has provided the key to 

understanding material substances17. Joan Baptista Vico’s famous statement Verum et 

factum convertuntur, established that we can get rational knowledge only about what we 

have done18. For chemists, we can know only what we have produced through 

technological processes. As Bachelard noted, even when they extract plants or minerals 

from nature, chemists first submit them to a number of purifying processes19. Thus, they 

rely on facticity to understand nature. This is how Bachelard interpreted Marcelin 

Berthelot’s famous statement: “Chemistry creates its object”20. Making things and 

making them as pure as artefacts is the chemist’s approach to nature. 

 Bachelard also emphasized the asymmetry between analysis and synthesis. 

Indeed analysis can provide chemists with some evidence about the nature and 

proportion of the constituents of substances. However, it will never give them 

confidence, for there remains the suspicion that the results of analysis were produced by 

the analytical tools rather than being preexistent in the compound. Analysis lacks 

definitive demonstrative power. While it may serve the purposes of falsification, only 

synthesis has the power to confirm. There is no way to overcome objections apart from 

recomposing the original compound from its purported components. Synthesis thus 

stands as the realization of a conjecture about the composition or the structure of a 
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substance. Chemical proofs depend on the reciprocity of analysis and synthesis, which 

are both indissociably intellectual and experimental processes. Their reciprocity is at the 

root of Immanuel Kant’s admiration for Georg Ernst Stahl, who “transformed metals 

into calx and calx into metals”21. 

 

 

“MAKING UP STORIES WHILE MAKING MOLECULES”22 

 

Making is the chemists’ major activity, and it is more than simply a material 

practice. It also characterizes an intellectual practice. As Hoffmann put it, they are 

“making up stories” about what they are doing with their hands and flasks. Chemical 

theories, unlike theories in physics, are not really aimed at explaining phenomena. 

Rather, they try to make sense of phenomenological data using stories about tiny 

invisible atoms or molecules. As early as the seventeenth century, Nicolas Lemery 

forged hooked and spiny atoms to account for the behaviour of acids and alkalis, while 

modern chemists use molecular models to predict new compounds. In so doing, they do 

not claim to provide a causal explanation, and their theory is closer to being a narrative. 

Just as early-modern hooked and spiny atoms were a “Cartesian novel”, modern 

electronic orbitals could be regarded as a “quantum novel”. Similarly, the structural 

formulas invented by nineteenth-century chemists were not meant as representations of 

the real world of atoms and molecules. Thus, Charles Gerhardt, who was a staunch 

advocate of atomic notation, drew the formulas of organic compounds according to 

three molecular “types”. He used these types to interpret a great many reactions, and 

even predicted unknown compounds by substituting radicals for hydrogen in each of the 

types. But he never suggested that his formulas reflected the internal architecture of the 

compounds he was representing and refused to view the radicals as isolable and real 

bodies. They were useful and indispensable fictions.  

 Nevertheless, speaking of “fictions” does not necessarily mean that chemical 

theories have no truth-value at all or that they should be viewed as mere instruments for 

prediction and classification23. Instead we need to redefine what counts as the truth-

value of chemical statements. The dilemma of instrumentalism (or positivism) versus 

realism is a pitfall that chemists need strenuously to avoid. If by realism we mean the 
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representation of an external reality, it is just as inadequate a label as instrumentalism. 

Chemists make extensive use of visual images but these are not intended to refer to real 

individual molecules. Rather they are better thought of as icons representing relations 

between individual entities. Chemists seem to share the conviction that the bedrock of 

chemical properties does not lie at the ultimate level of matter. In other words, they do 

not strive to reach the roots, or to unveil the ultimate building blocks of matter. They 

make up plausible narratives to account for the properties observed in individual 

substances that they use, or to predict and make new substances with desired properties. 

In so doing, they are constantly shifting from the macro- to the micro-level24. Thus, they 

never settle on a scale for their reflection, with the constant shifting between levels 

determining their characteristic expository style. Chemistry textbooks, whether from the 

seventeenth century or most recent ones, tend to juxtapose narratives of experiments 

performed at the macro-level with narratives about relationships between microscopic 

invisible entities. The two kinds of narrative run in parallel but neither alone accounts 

for the ultimate causation.  

 Rather than being ideal accurate representations of nature, these narratives 

display meanings, with atoms and molecules best described as actors in a story. Even 

when these invisible entities are visualized using imaging techniques, they do not mirror 

the ultimate reality underlying phenomenological appearances, although they do mean 

something for the chemists. In certain cases they may mean that there is a possibility of 

breaking a bond, or of substituting a functional group or of encapsulating certain atoms 

within a cage molecule, etc. In addition stories require a temporal structure: temporality 

plays a prominent role in chemical narratives as the kinetics determines whether the 

reaction will be a success story or not. Wilhelm Ostwald was, like Berthollet, concerned 

with incomplete reactions whose outcome depends on subtle equilibriums, and 

proposed new narratives of chemical experiments based on the frequency of collisions. 

Thus, for example, catalytic materials that prompt the advancement of a reaction in a 

specific direction play a similar role to that of the hero’s companion in epic narratives. 

 

 

REQUIREMENTS AND OBLIGATIONS 
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Hoffmann’s metaphor of story telling suggests that chemical theories have very 

weak explanatory power. In fact, Hoffmann makes the case for the “power of poor 

theories” and insists that two alternative theories, belonging to different paradigms, are 

not necessarily incommensurable25. A standard example is Linus Pauling’s theory of the 

chemical bond, associating Lewis’s notion of a shared electron pair with the quantum 

mechanical notion of a covalent wave function, which proved to be extremely useful in 

heuristic terms. Hoffman comments:  

 
I think incommensurability is no problem whatsoever to chemists. Differences in language are there, 

the result of different paradigms, but more so of history, and of education. Yet people, eager to make 

things, with no handwringing on how problematic it all is, graft one way of understanding onto 

another. 

  

Making up stories does not, however, mean that chemists rely on fanciful and 

arbitrary accounts. It just means that chemists do not claim to reach the roots, or the 

ultimate cause of phenomenological data. Chemistry, like other experimental sciences, 

is a normative activity. But if its ruling norm is not to provide the perfect representation 

of reality, we may nevertheless demand what kind of norms are in use in this science. 

 The distinction between requirements and obligations forged by Isabelle 

Stengers in her “ecological” approach to practices in science is particularly helpful for 

characterizing chemical practices26. Experimental scientists like to see their activities as 

conforming to a number of criteria or standards, including logical rules, experimental 

controls, peer review, etc. Conforming to such general widely accepted rules allows 

them to draw a clear demarcation line between their practices and others that are 

generally considered to be non-scientific or at least less scientific. Fulfilling such 

criteria is thus indispensable for defining the identity of a scientific practice, and in this 

respect chemists are no exception. They comply with the canons of the so-called 

scientific method, which shows that they are full members of the scientific tribe. 

However, Stengers argues, experimental practices are also governed by a number of 

more elusive and tacit norms – dubbed “obligations” – instituted by active scientists in 

specific contexts. The chemists’ obligations are the collective standards that they have 

adopted over the centuries in order to learn something about nature from their 
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experimental practices, while at the same time never forgetting about making, and 

producing new artefacts or drugs.  

 Galileo’s major obligation – that only matters-of-fact can tell us about the truth – 

led him to question nature in a mathematical language in his experiments on falling 

bodies. By contrast, the chemists’ major obligations seem to be caution and skepticism. 

Crystals, liquids or gases in flasks behave in unpredictable and sometimes positively 

dangerous ways. These behaviors are so puzzling that chemists had to forge an arsenal 

of obligations: purifying, synthesizing, submitting them to standard reactants to settle 

their identity and characterize their properties. For this purpose of identification they 

rely on a wide range of different tests. In medieval times, chemists tested everything 

with fire, but since then they have come to use all sorts of chemical reactants and 

physical techniques of measurement, ranging from traditional balances, hydrometers, 

gasometers, to modern spectrometers. They have to pay particular attention to the 

conditions of their experiments – in some cases even more than experimental physicists 

– as slight modifications in temperature, pressure, concentration etc., can alter the 

course of a reaction, thereby changing the composition of the product. Since Robert 

Boyle’s famous publication, ‘sceptical’ has often been associated with the word 

‘chemist’. It does not mean that chemists are stubborn unbelievers. Rather it is because 

what they know about chemical substances and chemical reactions justify a cautious 

attitude concerning any conclusions they might be tempted to draw from their 

experiments. 

 Identifying, naming, and classifying are the chemists’ principal responses to 

their major obligation. Due to their “creativity” – millions of new molecules are 

reported in the Chemical Abstracts each year – chemists are continuously under 

pressure, as they have to find a name and a place for all these newcomers in their 

databases. In 1787, when a group of French academicians designed a “method for 

naming”, they assumed that by formulating the major requirements for a chemical 

nomenclature, they would provide subsequent generations with reliable guidelines for 

naming any newly discovered substances27. They formulated general rules for coining 

systematic names based on composition, and banished names based on the substance’s 

qualities, its uses, or the circumstances of its discovery. In doing so, they were acting as 

‘architects of matter’, designing and planning future chemical edifices. The growing 
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number of organic compounds in the nineteenth century nevertheless generated a 

chaotic situation with dozens of different names for the same substance. Standardization 

and systematization were the two leading requirements reiterated at the end of the 

nineteenth century by the first International Conference on chemical nomenclature held 

in Geneva in 1892. The concerted response was to give each substance an official name, 

but most of them were never used by chemists in their daily chemical practices. Indeed, 

this ideal of standard and systematic names has been continuously challenged, and 

linguistic customs established within scientific journals tended to prevail, meaning that 

the standard names in common use no longer complied with the original ideal of a 

systematic nomenclature. Regular international meetings and a permanent commission 

on nomenclature at the International Union for Pure and Applied Chemistry continue 

periodically to revise the rules. Still, the current nomenclature is by no means as 

systematic as the 1787 reformers had envisioned. Trivial names – names that do not 

refer to the structure of the compound – coexist with the systematic names that conform 

to the rules. In fact, both in organic and inorganic chemistry, most names are semi-

trivial, mixing informal parts with those constructed following the systematic rules. 

Thus, the difficulty of keeping up with systematic names for extremely complex 

compounds proved so difficult that chemists had to renounce their ambition of 

submitting the molecular world to their ideal of rational systematization. This obligation 

may be considered a fundamental weakness, a sign of the imperfection of the chemical 

sciences. But what Stengers means by “obligation” suggests a more charitable reading. 

This term suggests a kind of binding agreement between chemists and the object of their 

investigations. Chemists are “obliged”, in the dual sense of the word, bound by and 

indebted to the growing population of molecules they both create and investigate. They 

are less “architects of matter” than dusty laborers trying to discipline a jungle of diverse 

molecules. 

 The repeated attempts to classify chemical elements during the nineteenth 

century provide another illustration of the interplay between requirements and 

obligations. The official requirement was to group simple substances according to their 

common properties. Nevertheless, chemists soon realized that the ideal of a “natural 

classification” reflecting all the similarities between the elements would be impossible 

to achieve. They consequently adopted “artificial classifications”, based on one or two 
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properties arbitrarily selected among the wide variety of candidates. They even 

combined artificial classifications for metals with natural classifications for non-metals 

while admitting that the division between metals and non-metals was itself artificial. 

Such hybrid arrangements are far from the rational ideal and might therefore be 

considered a major defect. Chemists were, however, “obliged” to adopt and teach such 

imperfect solutions, as they were aware that their picture of the material world was 

inevitably biased, that between the exigencies of an operational system and an ideal one 

something had to give. Emile Meyerson, a chemist turned philosopher, argued that 

although the distinction between metals and non-metals was arbitrary, chemists used it 

because they had to draw strong distinctions, to artificially introduce rigid demarcations 

into the flux of complex inter-relations, in order to be able to refute conjectures. 

Rigidity and falsification add truth-value to the story invented by chemists. Meyerson 

used a suggestive metaphor, borrowed from Arthur Balfour, to characterize the 

chemist’s approach to nature: they are “drawing a fiber” out of the magma of reality. 

Chemical classifications seem to be based on the assumption that nature is composed of 

a “fibrous structure” in which they select a specific region in order to disentangle the 

local network of relations.28 Focusing on a fiber, they start reasoning about its 

connections with the whole fabric, while all the time looking at the landscape created by 

the extraction of this one fiber. They never claim that this fiber is the root of the 

structure, or the unique entry into the puzzle. But drawing out a fiber is their obligation, 

which means, on the one hand, that they must not break it, and that they must use it as a 

robust guideline. On the other hand, they are not to treat the fiber as a completely secure 

element that would permit safe deductions. “If…then” is a forbidden leap in a jungle 

where unexpected surprises are strewn on every pathway. Thus, chemical classification 

remains an open field. More than a century after Mendeleev’s periodic system came to 

be considered “the chart of nature” a view subsequently justified by atomic physics, 

chemists are still unsure about the best way to represent the periodic function. There is 

no ideal chart. Each year, new systems are designed and new graphic representations are 

submitted for publication, some of them concocted by obscure chemical practitioners, 

suggesting that classifying elements remains a work in progress, a communal and 

endless task29. 
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“NO NATURAL BODY CONSISTS OF MATTER PER SE” 

 

An aura of materialism surrounds the image of chemistry, which derives as much 

from the chemist’s concern with material things as from the abundance of material 

goods generated by the chemical industry. 

 Ironically, however, chemists do not care very much for matter. They have used 

the terms “substances” or “bodies” for centuries but, as Venel noted in Diderot’s 

Encyclopédie, “no natural body consists of matter per se”. 30 Rather than being 

concerned with matter in general, chemists want to know why only one particular acid 

dissolves gold or why spirit of niter joined to salt of tartar produces true saltpeter. They 

pay attention to individual properties, with reference to a jungle of different materials 

and their potentialities. 

 Chemistry is concerned with the stuff things are made of, but we need to ask 

what concept of substance they use. In The Philosophy of No, Bachelard argued that the 

metaphysical notion of substance inherited from the Ancient Greek quest for 

permanence has been modeled on classical physics. Since Descartes, matter has been 

regarded as an essentially homogeneous substance defined in geometrical terms, with 

the diverse sensory properties that characterize the multiplicity of the phenomenal world 

being merely “secondary qualities” arising from the spatial arrangements and 

rearrangements of indistinguishable elements. This metaphysical notion of substance as 

a permanent and pervasive substrate underlying phenomenological change is, however, 

completely inappropriate for chemistry. What might a “metachemical” notion of 

substance look like? The stuff that chemists call ‘substances’ is always in the plural. 31 

For chemists, substances are concrete entities with individual properties. Explanations 

of chemical phenomena rely on a few immutable elements responsible for the individual 

properties of compounds. They may be irremediably invisible but they can be traced by 

means of the sensible effects that they cause at the phenomenological level, or by means 

of their circulation from one combination to another. 

 The dichotomy concerning this issue outlined above suggests that as far as the 

philosophy of matter is concerned, physics and chemistry are heirs to two different 

ancient traditions, with physics deriving from Democritus and Epicurus and chemistry 
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from Empedocles and Aristotle. In the former case, the endless variety of substances 

with their individual specific properties is referred to essentially similar atoms, only 

distinguishable with respect to their figures and movements, while in the latter case, the 

variety of individual properties is attributed to strongly individualized principles. In 

Le Mixte et la combinaison chimique, Pierre Duhem suggested a similar distinction 

between two “research schools”. The first was the “corpuscular school” – Cartesian and 

then Newtonian – which one could characterize by Boyle’s assumption of a “catholic 

matter”, and which would lead to the mechanistic models of the nineteenth century that 

Duhem rejected. The second was the “Aristotelian school”, taken to be characterized by 

its rejection of all “systems”, all a priori reasoning, as well as its firm attachment to 

irreducible qualities.32. 

 This dual genealogy is, however, superficial and in the end misleading. The so-

called rival paradigms – the monist, atomistic, mechanistic philosophy versus the 

pluralist, qualitative doctrine of elementary principles – were not incommensurable. 

Most chemical theories managed to combine them in some fashion. As historians of 

early modern chemistry have shown, a corpuscular theory was embedded in the 

alchemical tradition, and was, in fact, crucial for justifying the possibility of 

transmutation.33 It is now well established that Boyle’s corpuscular philosophy, for 

example, stemmed from this longstanding alchemical tradition transmitted via Daniel 

Sennert. Thus, Boyle’s corpuscular philosophy was not the grafting of a physical theory 

onto a previously incoherent body of alchemy or iatrochemistry34. Later on, 

Georg-Ernst Stahl also assumed that material bodies were constituted by the mixta, 

composita and supercomposita of constituent particles. He assumed a corpuscular view 

of matter meshed with a view of individual principles acting as the vehicles of the 

properties. Such combinations suggest that atomist views and the principle theories 

were deployed for different purposes and did not address the same issues. Neither of 

them holds the secret of matter. For chemists, there is no privileged ultimate level of 

reality; instead they adopt what Bachelard termed a “laminated reality” since laboratory 

practice gives access to substances at multiple levels simultaneously35.  

 

 

THE CHEMISTS’ “ESSENTIAL TENSION” 



14                                        FRENCH PHILOSOPHY OF SCIENCE: CONTEMPORARY ISSUES 
 
 

 

 

Stahl used a clear-cut distinction to differentiate the territory of chemistry from that 

of physics. He acknowledged that mechanical physics could account for one species of 

material compounds, namely “aggregates”, whereas only chemistry could deal with 

“mixts”36. Aggregation was a juxtaposition of units, and could be understood in 

mechanical terms such as mass and movement. Mixtion, however, was the union of 

principles involving individual affinities. The decomposition of an aggregate would not 

affect the properties of its components whereas the dissociation of a mixt entailed 

changing the properties of its elements.  

 This conceptual distinction echoed the issue raised by Aristotle in 

De generatione and corruptione I about the mode of presence of the constituents in a 

mixt. The problem emerged from a critical review of atomism. If atomist doctrines were 

right, then a mixt would be just a collection of atoms placed side by side, like grains of 

wheat and grains of barley. “To the eye of the Lynx nothing would be combined”37; 

Constituents would be physically present in the compound although not visible at first 

glance. Thus, they can be recovered without changing the properties of the compound. 

Aristotle insisted that if the components are preserved unchanged then the mixt is only 

apparent. By contrast, a true process of mixture involves the interaction of qualitatively 

differentiated ingredients in such a manner that they do not persist unchanged in the 

resulting compound. A true mixt is not, therefore, composed of constituents sticking 

together. Something new is created, with properties not possessed by the original 

ingredients. The emergence of a new ‘stuff’ implies that the ingredients no longer 

coexist with the mixt. Consequently, a true mixt can be characterized by an either…or 

condition. Either you get a compound and you lose the properties of the initial 

ingredients, or you recover the original ingredients and you lose the properties of the 

mixt. By contrast, the atomic conception of chemical combination does not demand 

such a disjunction. 

 Paul Needham, who offered a detailed analysis of Aristotle’s conception of 

mixts, has convincingly argued that Aristotle raised the fundamental issue of chemistry, 

i.e. the generation of new substances out of initial ingredients38. This clear recognition 

of the problem should not, however, be used to suggest that Aristotle conceived a 
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“theory of chemical reaction and chemical substances”, as Paul Neeham seems to argue, 

since chemistry did not exist as an identifiable branch of knowledge at this time. 

 Avoiding such anachronisms is important for grasping the concept that I have 

dubbed the chemists’ “essential tension”. By referring to the title of Thomas Kuhn’s 

famous book, I want to draw attention to the specificity of chemistry. Indeed the tension 

that Kuhn found implicit in scientific research between tradition and revolution, 

between conformism and iconoclasm is also at work in chemistry, although its identity 

has been shaped by a more specific tension between two competing views of chemical 

combination39. At the turn of the eighteenth century, Stahl’s distinction between 

aggregates and mixts was aimed at circumscribing a territory for chemistry, centered on 

the notion of the mixt, in a defense against attempts at annexation by mechanism. So 

successful was this conceptual strategy, that Stahl was proclaimed the founder of 

chemistry throughout the eighteenth century. A century later, however, chemists no 

longer used the word mixt, as the notion of composition prevailed. In particular, 

Lavoisier’s famous definition of elements as undecomposable substances was an 

integral part of a reorganization of chemistry along the lines of another distinction, that 

between simple and compound. Lavoisier, who came to earn the title of the founder of 

“modern chemistry”, redefined it as the science that aimed at decomposing natural 

bodies and “examining separately the various substances entering into their 

combination”40. To be sure the compositional perspective was nothing new, but with the 

reform of chemical language it became the dominant paradigm41. In the new language, 

names of compounds were coined by simple juxtaposition of the names of their 

components, and were considered as “mirror images” of the actual composition of the 

material bodies in question42. Lavoisier, who admired and extensively quoted 

Etienne Bonnot de Condillac’s Logic, adopted his views of languages as analytical 

methods as well as his notion of analysis as a two-way process, from simple to 

compound and from compound to simple. According to Condillac, analysis is a mental 

process involving the successive visualization of the individual elements of a picture 

presented simultaneously as a whole to the senses. Condillac used the metaphor of 

sight-seing from the window of a castle. Immediately I see a landscape, then by analysis 

the mind will distinguish and name each element of the landscape pre-existing in the 

global view.43.  Condillac’s logic, inspired by algebra, in turn inspired Lavoisier’s use 
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of equations to describe chemical reactions. A compound is described as the addition of 

two constituent elements. It is entirely characterized by the nature and proportion of its 

constituents. The use of the sign “equals” in the equation clearly indicates that chemists 

are no longer thinking in terms of the either/or condition. The puzzling issue raised by 

Aristotle about the mode of the presence of ingredients in the compound has been laid 

aside, discarded rather than being solved. 

 Reinforced by John Dalton’s atomic hypothesis, the compositional paradigm has 

proved very successful. By the middle of the nineteenth century, the definition of a 

compound according to the nature and proportion of its constituents was being 

challenged by a structural paradigm that emphasized the importance of the arrangement 

of the atoms in molecules. Nevertheless, empirical and structural formulas both 

eliminate the either/or condition. The actual presence of the constituent elements 

suffices to account for the properties of the compound. 

 Pierre Duhem’s return to Aristotle’s notion in the title of Le mixte et la 

combinaison chimique (1902) was clearly intended to undermine the prevailing atomist 

interpretations. The familiar example of sugared water in his introductory chapter 

summarized Aristotle’s theory in a few words, and restored the legitimacy of the 

either/or condition: 

 
What in general, then, is a mixt? Some bodies, the ones different from the others, are brought into 
contact. Gradually they disappear, they cease to exist, and in their place a new body is formed, 
distinguished by its properties from each of the elements that produced it by their disappearance. In 
this mixt, the elements no longer have any actual existence. They exist there only potentially, 
because upon destruction the mixt can regenerate them44. 

 

Duhem mainly reproached atomistic explanations for assuming that the properties 

of a compound could be deduced from those of its constituent elements or atoms. His 

criticism also encompassed Lavoisier’s compositional paradigm, since elements are not 

conserved as such in chemical reactions. 

Emile Meyerson indirectly addressed the same issue although, unlike Duhem, he 

claimed that chemists could not do without atoms. He nevertheless pointed to the 

either/or issue involved in chemical equations, starting with the observation that when 

chemists write the equation Na + Cl = Na Cl, they obviously presuppose the 

conservation of matter45. He observed that, interpreted literally, a chemical equation is a 

non-sense. In asserting that the addition of a soft metal like sodium to a greenish gas 
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like chlorine equates to a colorless salt, chemists seem to be oblivious of the very 

conditions of their laboratory practice. Although they continuously play on the 

potentialities of various individual substances and take advantage of their differences, 

they admit that the compound “equals” the sum of its initial ingredients.  

 Thus chemistry seems to be moved by two antagonist forces. On the one hand, 

chemists aim at reducing the qualitative diversity of substances to identity. They would 

like to deduce their empirical data from an ultimate hidden cause in order to “satisfy 

their rational tendency to identification”, to use Meyerson’s terminology. Chemical 

equations balancing the inputs and outputs of chemical reactions are the best expression 

of this effort aimed at identification. They presuppose subsistence throughout chemical 

change, or the conservation of elements in chemical reactions, even though the diversity 

of substances and their idiosyncratic behaviours constitute the very raison d’être of 

chemical practices. Without a diversity of substances with their own individual 

properties and without a diversity of processes of reaction, there would be no chemical 

reactions and so no chemistry. Thus, chemists have no choice but to face 

“irrationals” (again using Meyerson’s terminology). They sense that it is useless to try 

and reach the ultimate reality, and hopeless to try reducing everything to sameness46. 

 The tension between the two conflicting views of chemical combinations is not 

necessarily to be understood as a fight between the rational and the irrational, or as a 

contrast between a rational tendency and a more pragmatic one. After all, atomic 

theories do not hold a monopoly over rationality47. Moreover, atomic notions, and 

molecular models are man-made “artifacts”, tools forged for theoretical and practical 

purposes. Nevertheless, the tension is an essential one, as neither of the perspectives is 

sufficient to account for chemical combinations, while the two descriptions do not work 

harmoniously together. Chemical combinations thus offer a new case of 

complementarity in Niels Bohr’s sense; two necessary but nevertheless exclusive 

descriptions of a phenomenon48.  

 

 

MATTERS OF CONCERN 
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Because chemists are not really concerned with understanding the fine structure of 

matter, they have regularly dismissed all hypotheses concerning the real existence of 

atoms. For instance, August von Kekulé, who conjectured the hexagonal structure of 

benzene that formed the basis of most artificial organic compounds manufactured in the 

second half of the nineteenth century, denied the existence of atoms. More precisely, he 

banished the ontological issue from chemistry, claiming that it belonged to metaphysics. 

Thus, chemists made extensive use of atoms and molecular models while denying their 

existence or claiming that they were simply fictions. This apparently inconsistent 

attitude survived (in France at least) long after the first demonstrations of molecular 

reality and the founding of atomic physics. For instance, the French chemist Georges 

Urbain wrote in 1921: “It is not absurd to suppose that the atomic model is identical 

with absolute reality. However, we know nothing positively about it. This model is a 

work of art”.49 Such claims have sometimes been viewed as evidence for the theory 

that, under the pernicious influence of Auguste Comte, French chemists were sticking to 

strictly positivist positions, and consequently lagging behind modern chemistry. 50 This 

apparently inconsistent attitude was not, however, confined to the small circle of French 

chemists. The ontological status of bonds and orbitals was discussed at length by the 

founders of quantum chemistry, with some of them denying their physical reality in an 

effort to demarcate the chemical approach to concepts such as resonance borrowed from 

physicists.51 Chemistry thus appears as a science bound to ontological non-commitment, 

an attitude not shared by modern physicists.  

 If we resist the temptation of identifying the philosophy of physics as the “right 

model” for all of the sciences, how are we to understand the strange attitude of these 

non-committal chemists? For Meyerson, the chemists who denied the existence of 

atoms simply lacked authenticity52. He assumed that all chemists professed a naive 

realism, a belief in the existence of things such as barium sulphide, for instance. 

Meyerson is right: chemistry is certainly not ontology-free, although he misunderstood 

its ontology. The assumptions underlying chemical practices do not concern things such 

as barium sulphide, or rather, to be more precise, this sort of  “thingism” (chosisme) is 

not typical of chemists. Two major matters of concern more adequately characterize 

their ontology: i) a concern for relations, and ii) a concern for agency. 

 



PHILOSOPHY OF CHEMISTRY 
 

 

 

19 

i) Relations 

 

There is no question that chemists deal with individual substances and pay attention 

to their molecular structures, but these things are of interest to them only in so far as 

they enter into relation with other units. Nineteenth-century structural formulas were not 

meant to be images of reality, and yet nor were they pure conventions. Rather they 

depicted capacities for bonding, the so-called atomicity or valence. Similarly, series of 

compounds were essentially viewed as potential combinations or syntheses. Ernst 

Cassirer has emphasized the functional determination of the concept of atoms in 

Substance and Function where he convincingly argued that the treatment of an atom as 

the “absolute substrate” of properties is only apparent. In fact, the concept of atom 

serves as a mediator for mapping out a network of interdependent relations between 

objects53. 

 Bachelard also emphasized chemists’ concern with relations rather than with 

substrates. Since relations imply at least two terms, chemistry necessarily presupposes 

various kinds of beings. The two features that Bachelard selected to define the 

rationalism of modern chemistry, which he dubbed “non-lavoisieran”, were that it was 

plural and relational. For him, Mendeleev’s system epitomized the shift from realism to 

rationalism, because “law prevailed over matter of fact”54.   

 The focus on relations allows chemists to choose the unit of matter that best suits 

their views. For instance, in Pauling’s valence bond theory, atoms are the combining 

units, and their interaction results in the formation of molecules. By contrast, in 

Mulliken’s molecular orbital approach, the atom is no longer the relevant concept for 

understanding chemical bonds. Molecules are taken as the basic building blocks, formed 

by feeding electrons into molecular orbitals55.  

 After quantum chemistry had drawn physics and chemistry into cooperation, 

chemists continued to debate about the ontological status of relations themselves. In this 

context, we can cite the debate that took place between G. W. Wheland and Pauling 

about double bonds and resonance.56 Thus, time and again, chemists set themselves 

apart by rejecting the physical meaning of the concepts they are using. They champion 

artificiality or “facticity” not only in their experimental practice but also in their 

intellectual practice. If today’s chemists are no longer noncommittal, it is mainly 
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because they assemble atoms and molecules like Lego blocks. They believe in orbitals 

as long as they can explain things with them and design reactions. According to 

Hoffmann “The reifying power of synthesis, when you do it with your hands, time and 

again, is incredibly strong”57. 

 

ii) Agencies 

 

The chemists’ “things” are implicitly described in terms of structures, properties 

and functions. Molecular structures are above all conditions for the emergence of 

properties, which themselves are viewed as dispositions for desired performances. 

While chemists do not care for matter, they are by contrast always searching for 

materials, i.e. substances useful for something. Thus, in the eighteenth century, 

Hermann Boerhaave and Guillaume-François Rouelle redefined the four elements in 

terms of agents, conceiving them as both the constituent units of compounds, 

responsible for the conservation and transport of individual properties through chemical 

change, and instruments of chemical reactions. Rouelle introduced his four-element 

theory under the heading “Instruments” that included “natural instruments” - fire, air, 

water and earth -, and two artificial instruments - menstrua and vessels. The ancient 

radical distinction between nature and human artifacts was thereby being blurred in 

favor of an instrumental view of matter as an active operational process. Material 

principles were always at work, circulating from mixt to mixt, whether in laboratory 

vessels or in the depths of the earth or the heights of the heavens. Subsequently, 

following the rise of the compositional paradigm after the reform of chemical language, 

and later the structural paradigm linked with the emergence of organic chemistry, 

chemical names and formulas have been mainly used as “paper tools” for predicting 

operations and substitutions.58. They display the possible uses of compounds through 

their structure. This action-oriented language inspired Bachelard’s description of 

structural formulas as “rational substitutes”, providing a clear account of the 

possibilities for experimentation59. This is why nineteenth-century chemists could reject 

all ontological commitment concerning atoms and molecules, while using them like 

plumbers use pipes, valves, and joints. Even today chemists refuse to endow the atomic 

theory with the power of representing the world, as long as they are concerned with 
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powers for intervening in the world. Atoms and molecules are just potential actors in 

the drama of chemical transformation.  

 Ian Hacking’s reflections on the way the physicists use electrons in electron 

microscopy is similar to the way chemists view the constituents of matter60. Electrons 

are less explanatory notions than instruments for acting or creating phenomena. 

Hacking’s distinction between “realism about theories” and “realism about entities” can 

thus be applied to chemistry. To be sure, chemists are realists; they believe in the reality 

of entities, which allow them to operate on the outside world or to be affected by it. 

“Operational realism” would thus be the right phrase to characterize the 

chemists’ philosophy. The material world is a theater for operations; the entities 

underlying observable macroscopic phenomena are above all agents.  

 In this respect, the three categories of structures, properties, and functions are 

not the most appropriate for the philosophy of chemistry. Aristotle provides better 

resources by the addition of his notion of potential, which remains appropriate for 

characterizing the modality of constituent elements in combinations61; The dual nature 

of chemistry – science and technology – requires the whole panoply of subtler 

distinctions found in Aristotle’s treatise on Categories, 862. Properties belong to the 

category of quality, but there are many varieties of qualities. States (for instance, hard or 

soft) differ from dispositions. The former are stable and durable “possessed” qualities, 

whereas the latter are ephemeral and easily altered. Both possessions and dispositions 

being acquired in specific circumstances differ from natural capacities embedded in the 

subject. They all differ from “affections” (bitterness, sweetness), which simply refer to 

sensory properties. The chemists’ art of synthesis takes advantage of the whole 

spectrum of capacities in order to put molecules to work, to make the molecules do 

what chemists cannot do with their own hands. 

 In 2003, Susan Linquist, a biologist from MIT’s Whitehead Institute, announced 

at a conference that: “about 10,000 years ago, [humans] began to domesticate plant and 

animals. Now it’s time to domesticate molecules”63. But domesticating molecules is 

what chemists have been doing for centuries. At the cost of repeated experimental trial 

and error, they have managed to tame an incredible number of molecules, to get 

sufficient control over their reactions to be able to use them as agents for performing 

specific tasks. Nevertheless, this domesticated stuff has never worked in the same way 
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as man-made tools or machines. Substances operate according to their own nature, even 

when they are chemical “creatures”. Through a number of more or less spectacular 

chance events and deplorable accidents, chemists have learned that they are still at the 

mercy of unexpected outcomes and that reactants do not always behave in a foreseeable 

way.  

 In addition, chemists usually work with huge populations of molecules in their 

vessels. Unlike nanoscientists, who are trying to domesticate molecules one at a time, 

chemists have no control over individual molecules, although they may know a good 

deal about the species of molecules in question, especially when they have created the 

substance themselves. Nevertheless, the shift in scale of the operations has radically 

changed the relationship between men and materials. The slogan of the nano-initiative, 

“shaping the world atom by atom” expresses the ideal of control and full command that 

lies behind nanotechnology. Individual molecules are supposed to be reliable entities, 

responding predictably to precise signals. So deep is the contrast between this culture of 

precision and the more crude tradition of chemists, that for Eric K Drexler, a champion 

of nanotechnology, chemical synthesis is an inexplicable enterprise, which he compares 

to trying to assemble a car by putting all the necessary parts in a large box and shaking 

them up together.64  Nevertheless, such miraculous processes constitute the everyday 

functioning of the world’s chemical factories. The ‘cars’ that the chemists have 

managed to assemble by such ham-fisted methods are new things, with the constituent 

parts no longer accessible or even visible. When deploying their art, that of making 

molecules work for them, chemists are not like Plato’s demiurge, who builds up a world 

by imposing his own rules and rationality on passive matter. Rather, they are like a 

ship’s pilot at sea, who, constrained by the force of the ocean and atmosphere, is 

obliged to channel or guide the forces and processes given by nature, and ultimately 

exhibits the powers inherent in nature in the outcome.   

 In guise of a conclusion, I want to offer a few reflexive remarks on the functions 

of history in this philosophical essay on chemistry. In his paper on “The relations 

between the history and the philosophy of science”, Kuhn argued that bringing them 

together could be subversive, because philosophy and history were two distinct mental 

sets like the rabbit and duck in the famous Gestalt ‘duck-rabbit’ figure65. Although this 

mutual exclusion seems quite alien to French scholars trained in a tradition that 
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promotes the conviction that: “there is no epistemology that is not historical”66, the 

functions of history in this essay have to be clarified. History is not a source of 

examples that serve to illustrate and confirm philosophical claims about the “essence of 

chemistry”. There is no such thing as an immutable essence of chemistry that would fit 

this kind of strong philosophical program anyway. Instead, history is used here as a 

source of problems. The historical materials are not meant to allow us to reconstruct the 

past, rather they are an indispensable detour for grasping the problems at stake and the 

philosophical views shaped by chemists themselves in their investigative and productive 

practices.67 For chemistry is a historical process. The journey into chemistry proposed 

in this essay should be thought of like a trip on a rocket ship that is continuously in 

motion, but changes direction in response to its environment and other circumstances, 

although overall retaining a more or less direct trajectory. The purpose was to identify 

the kind of problems and projects that have guided generations of chemists in defining 

this trajectory over time, thereby (unconsciously) reconfiguring the identity of their 

science. 

 Centuries of chemical practices oriented towards cognition and action have 

generated a set of specific obligations, which can be characterized as both 

epistemological and ethical rules. Caution, utility, and efficiency have been as highly 

valued as the quest for truth in the sense of adaequatio rei et intellectu. The chemical 

sciences are not aimed at unveiling the underlying reality beneath the surface. Instead, 

they deal with a jungle of molecules and strive to take advantage of their dispositions. 

Chemists are put under an obligation by these substances, by their structures, properties 

and capacities, meaning that respect, as much as responsibility, should be at the base of 

a chemist’s ethics.  

 

Acknowledgements: I am very much indebted to Roald Hoffman, Isabelle Stengers 
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