A. Rozinat, Process mining conformance and extension, 2010.

A. Rozinat, A. A. De-medeiros, C. W. Günther, A. Weijters, and W. M. Van-der-aalst, Towards an evaluation framework for process mining algorithms, Research School for Operations Management and Logistics, 2007.

W. Van-der-aalst, T. Weijters, and L. Maruster, Workflow mining: Discovering process models from event logs Knowledge and Data Engineering, IEEE Transactions on, vol.16, issue.9, pp.1128-1142, 2004.

W. M. Van-der-aalst and W. Van-der-aalst, Process mining: discovery, conformance and enhancement of business processes, 2011.

C. Rolland and C. Salinesi, Modeling Goals and Reasoning with Them, Engineering and Managing Software Requirements, pp.189-217, 2005.
DOI : 10.1007/3-540-28244-0_9

URL : https://hal.archives-ouvertes.fr/hal-00706380

E. B. Swanson, Management Information Systems: Appreciation and Involvement, Management Science, vol.21, issue.2, pp.178-188, 1974.
DOI : 10.1287/mnsc.21.2.178

B. Christie, Face to file communication: A psychological approach to information systems, 1981.

F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, User Acceptance of Computer Technology: A Comparison of Two Theoretical Models, Management Science, vol.35, issue.8, pp.982-1003, 1989.
DOI : 10.1287/mnsc.35.8.982

I. Ajzen and M. Fishbein, Belief, attitude, intention, and behavior: An introduction to theory and research by martin fishbein; icek ajzen, 1975.

L. Thevenet and C. Salinesi, Aligning IS to Organization???s Strategy: The InStAl Method, Advanced Information Systems Engineering, pp.203-217, 2007.
DOI : 10.1007/978-3-540-72988-4_15

URL : https://hal.archives-ouvertes.fr/hal-00706188

C. Rolland, P. Loucopoulos, V. Kavakli, and S. Nurcan, Intention based modelling of organisational change: an experience report, Proceedings of Evaluation of Modeling Methods in Systems Analysis and Design, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00707627

C. Salinesi and C. Rolland, Fitting Business Models to System Functionality Exploring the Fitness Relationship, Advanced Information Systems Engineering, pp.647-664, 2003.
DOI : 10.1007/3-540-45017-3_43

C. Rolland, Modeling the requirements engineering process, " in Information Modelling and Knowledge Bases V: Principles and Formal Techniques: Results of the 3rd European-Japanese Seminar, pp.85-96, 1993.

R. Deneckère and E. Kornyshova, Process Line Configuration: An Indicator-Based Guidance of the Intentional Model MAP, Enterprise, Business-Process and Information Systems Modeling, pp.327-339, 2010.
DOI : 10.1007/978-3-642-13051-9_27

C. Rolland, M. Kirsch-pinheiro, and C. Souveyet, An Intentional Approach to Service Engineering, Services Computing, pp.292-305, 2010.
DOI : 10.1109/TSC.2010.26

URL : https://hal.archives-ouvertes.fr/hal-00663848

M. Jarke and K. Pohl, Establishing visions in context: towards a model of requirements processes, ICIS, pp.23-34, 1993.

S. Najar, M. Kirsch-pinheiro, and C. Souveyet, Towards semantic modeling of intentional pervasive information systems, Proceedings of the 6th International Workshop on Enhanced Web Service Technologies, WEWST '11, pp.30-34, 2011.
DOI : 10.1145/2031325.2031330

J. Ralyté, R. Deneckère, and C. Rolland, Towards a Generic Model for Situational Method Engineering, Advanced Information Systems Engineering, pp.95-110, 2003.
DOI : 10.1007/3-540-45017-3_9

I. Mirbel and J. Ralyté, Situational method engineering: combining assembly-based and roadmap-driven approaches, Requirements Engineering, vol.5, issue.9, pp.58-78, 2006.
DOI : 10.1007/s00766-005-0019-0

C. Rolland, C. B. Achour, C. Cauvet, J. Ralyté, A. Sutcliffe et al., A proposal for a scenario classification framework, Requirements Engineering, vol.7, issue.2, pp.23-47, 1998.
DOI : 10.1007/BF02802919

URL : https://hal.archives-ouvertes.fr/hal-00707669

G. Khodabandelou, Contextual recommendations using intention mining on process traces, Proceedings of 7th Intl. Conf. on RCIS, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00811784

G. Khodabandelou, C. Hug, R. Deneckère, and C. Salinesi, Process Mining Versus Intention Mining, Enterprise, Business-Process and Information Systems Modeling, pp.466-480, 2013.
DOI : 10.1007/978-3-642-38484-4_33

URL : https://hal.archives-ouvertes.fr/hal-00803968

G. Khodabandelou, C. Hug, R. Deneckere, and C. Salinesi, Supervised intentional process models discovery using Hidden Markov models, IEEE 7th International Conference on Research Challenges in Information Science (RCIS), 2013.
DOI : 10.1109/RCIS.2013.6577711

URL : https://hal.archives-ouvertes.fr/hal-00803875

E. Yu, Modelling strategic relationships for process reengineering, Social Modeling for Requirements Engineering, vol.11, p.2011, 2011.

A. Dardenne, A. Van-lamsweerde, and S. Fickas, Goal-directed requirements acquisition, Science of Computer Programming, vol.20, issue.1-2, pp.3-50, 1993.
DOI : 10.1016/0167-6423(93)90021-G

C. Rolland, N. Prakash, and A. Benjamen, A Multi-Model View of Process Modelling, Requirements Engineering, vol.4, issue.4, pp.169-187, 1999.
DOI : 10.1007/s007660050018

URL : https://hal.archives-ouvertes.fr/hal-00707568

P. Soffer and C. Rolland, Combining Intention-Oriented and State-Based Process Modeling, Conceptual Modeling?ER 2005, pp.47-62, 2005.
DOI : 10.1007/11568322_4

L. Rabiner and B. Juang, An introduction to hidden Markov models, IEEE ASSP Magazine, vol.3, issue.1, pp.4-16, 1986.
DOI : 10.1109/MASSP.1986.1165342

Y. Bengio, Learning deep architectures for ai Foundations and trends, Machine Learning, pp.1-127, 2009.

L. E. Baum, T. Petrie, G. Soules, and N. Weiss, A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains, The annals of mathematical statistics, pp.164-171, 1970.
DOI : 10.1214/aoms/1177697196

K. P. Burnham and D. R. Anderson, Model selection and multi-model inference: a practical information-theoretic approach, 2002.

C. Rolland, A comprehensive view of process engineering, Advanced Information Systems Engineering, pp.1-24, 1998.
DOI : 10.1007/BFb0054216

URL : https://hal.archives-ouvertes.fr/hal-00707940

C. Fernstrom and L. Ohlsson, Integration Needs in Process Enacted Environments, Proceedings. First International Conference on the Software Process,, pp.142-158, 1991.
DOI : 10.1109/ICSP.1991.664346

J. A. Hartigan and M. A. Wong, Algorithm AS 136: A K-Means Clustering Algorithm, Applied Statistics, vol.28, issue.1, pp.100-108, 1979.
DOI : 10.2307/2346830

J. E. Eclipse, A. L. Cook, and . Wolf, Usage data collector Discovering models of software processes from event-based data, ACM Transactions on Software Engineering and Methodology (TOSEM), vol.7, issue.3, pp.215-249, 1998.

D. Lorenzoli, L. Mariani, and M. Pezzè, Automatic generation of software behavioral models, Proceedings of the 13th international conference on Software engineering , ICSE '08, p.8, 2008.
DOI : 10.1145/1368088.1368157

R. Agrawal, D. Gunopulos, and F. Leymann, Mining process models from workflow logs, 1998.
DOI : 10.1007/BFb0101003

A. Datta, Automating the Discovery of AS-IS Business Process Models: Probabilistic and Algorithmic Approaches, Information Systems Research, vol.9, issue.3, pp.275-301, 1998.
DOI : 10.1287/isre.9.3.275

B. F. Van-dongen and W. M. Van-der-aalst, Multi-phase Process Mining: Building Instance Graphs, Conceptual Modeling?ER, pp.362-376, 2004.
DOI : 10.1007/978-3-540-30464-7_29

A. J. Weijters and W. M. Van-der-aalst, Rediscovering workflow models from event-based data using little thumb, Integrated Computer-Aided Engineering, vol.10, issue.2, pp.151-162, 2003.

J. Herbst, A Machine Learning Approach to Workflow Management, Machine Learning: ECML 2000, pp.183-194, 2000.
DOI : 10.1007/3-540-45164-1_19

W. M. Van-der-aalst, H. A. Reijers, and M. Song, Discovering Social Networks from Event Logs, Computer Supported Cooperative Work (CSCW), vol.2, issue.3, pp.549-593, 2005.
DOI : 10.1007/s10606-005-9005-9

M. Song and W. M. Van-der-aalst, Towards comprehensive support for organizational mining, Decision Support Systems, vol.46, issue.1, pp.300-317, 2008.
DOI : 10.1016/j.dss.2008.07.002

W. M. Van-der-aalst, B. F. Van-dongen, J. Herbst, L. Maruster, G. Schimm et al., Workflow mining: A survey of issues and approaches, Data & Knowledge Engineering, vol.47, issue.2, pp.237-267, 2003.
DOI : 10.1016/S0169-023X(03)00066-1

J. E. Cook and A. L. Wolf, Automating process discovery through event-data analysis, Proceedings of the 17th international conference on Software engineering , ICSE '95, pp.73-73, 1995.
DOI : 10.1145/225014.225021

S. Das and M. C. Mozer, A unified gradient-descent/clustering architecture for finite state machine induction, NIPS, pp.19-26, 1994.

A. W. Biermann and J. A. Feldman, On the synthesis of finitestate machines from samples of their behavior, Computers, IEEE Transactions on, vol.100, issue.6, pp.592-597, 1972.

L. E. Baum and T. Petrie, Statistical Inference for Probabilistic Functions of Finite State Markov Chains, The annals of mathematical statistics, pp.1554-1563, 1966.
DOI : 10.1214/aoms/1177699147

J. E. Cook and A. L. Wolf, Event-based detection of concurrency, 1998.

A. A. De-medeiros and A. Weijters, Genetic process mining, Applications and Theory of Petri Nets 2005, 2005.

J. Herbst and D. Karagiannis, Integrating machine learning and workflow management to support acquisition and adaptation of workflow models, Database and Expert Systems Applications, 1998. Proceedings . Ninth International Workshop on, pp.745-752, 1998.