Supervised vs. Unsupervised Learning for Intentional Process Model Discovery

Abstract : Learning humans' behavior from activity logs requires choos- ing an adequate machine learning technique regarding the situation at hand. This choice impacts signi cantly results reliability. In this paper, Hidden Markov Models (HMMs) are used to build intentional process models (Maps) from activity logs. Since HMMs parameters require to be learned, the main contribution of this paper is to compare supervised and unsupervised learning approaches of HMMs. After a theoretical compari- son of both approaches, they are applied on two controlled experiments to compare the Maps thereby obtained. The results demonstrate using su- pervised learning leads to a poor performance because it imposes binding conditions in terms of data labeling, introduces inherent humans' biases, provides unreliable results in the absence of ground truth, etc. Instead, unsupervised learning obtains e cient Maps with a higher performance and lower humans' effort.
Type de document :
Communication dans un congrès
Business Process Modeling, Development, and Support (BPMDS), Jun 2014, Thessalonique, Greece. pp.1-15, 2014, 〈10.1007/978-3-662-43745-2_15〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal-paris1.archives-ouvertes.fr/hal-00994165
Contributeur : Charlotte Hug <>
Soumis le : mercredi 21 mai 2014 - 09:38:42
Dernière modification le : vendredi 27 mars 2015 - 00:48:30
Document(s) archivé(s) le : jeudi 21 août 2014 - 10:56:28

Fichier

bpmds2014_submission_25.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Ghazaleh Khodabandelou, Charlotte Hug, Rebecca Deneckere, Camille Salinesi. Supervised vs. Unsupervised Learning for Intentional Process Model Discovery. Business Process Modeling, Development, and Support (BPMDS), Jun 2014, Thessalonique, Greece. pp.1-15, 2014, 〈10.1007/978-3-662-43745-2_15〉. 〈hal-00994165〉

Partager

Métriques

Consultations de la notice

795

Téléchargements de fichiers

526