J. E. Cook and A. L. Wolf, Discovering models of software processes from event-based data, ACM Transactions on Software Engineering and Methodology, vol.7, issue.3, pp.215-249, 1998.
DOI : 10.1145/287000.287001

W. M. Van-der-aalst and W. Van-der-aalst, Process mining: discovery, conformance and enhancement of business processes, 2011.

I. Mirbel and J. Ralyté, Situational method engineering: combining assembly-based and roadmap-driven approaches, Requirements Engineering, vol.5, issue.9, pp.58-78, 2006.
DOI : 10.1007/s00766-005-0019-0

M. Jarke and K. Pohl, Establishing visions in context: towards a model of requirements processes, In: ICIS, pp.23-34, 1993.

C. Rolland and C. Salinesi, Modeling Goals and Reasoning with Them, pp.189-217, 2005.
DOI : 10.1007/3-540-28244-0_9

URL : https://hal.archives-ouvertes.fr/hal-00706380

V. Plihon and C. Rolland, Modelling ways-of-working, In: Advanced Information Systems Engineering, pp.126-139, 1995.
DOI : 10.1007/3-540-59498-1_242

URL : https://hal.archives-ouvertes.fr/hal-00708021

C. Rolland, N. Prakash, and A. Benjamen, A Multi-Model View of Process Modelling, Requirements Engineering, vol.4, issue.4, pp.169-187, 1999.
DOI : 10.1007/s007660050018

URL : https://hal.archives-ouvertes.fr/hal-00707568

C. Rolland, Modeling the requirements engineering process In: Information Modelling and Knowledge Bases, pp.85-96, 1993.

L. H. Thevenet and C. Salinesi, Aligning IS to Organization???s Strategy: The InStAl Method, In: Advanced Information Systems Engineering, pp.203-217, 2007.
DOI : 10.1007/978-3-540-72988-4_15

URL : https://hal.archives-ouvertes.fr/hal-00706188

C. Salinesi and C. Rolland, Fitting Business Models to System Functionality Exploring the Fitness Relationship, In: Advanced IS Engineering, pp.647-664, 2003.
DOI : 10.1007/3-540-45017-3_43

C. Rolland, M. Kirsch-pinheiro, and C. Souveyet, An intentional approach to service engineering. Services Computing, IEEE Transactions on, vol.3, issue.4, pp.292-305, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00663848

L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, vol.77, issue.2, pp.257-286, 1989.
DOI : 10.1109/5.18626

G. Khodabandelou, C. Hug, R. Deneckere, and C. Salinesi, Unsupervised discovery of intentional process models from event logs, Proceedings of the 11th Working Conference on Mining Software Repositories, MSR 2014, 2014.
DOI : 10.1145/2597073.2597101

URL : https://hal.archives-ouvertes.fr/hal-00994197

A. Dardenne, A. Van-lamsweerde, and S. Fickas, Goal-directed requirements acquisition, Science of Computer Programming, vol.20, issue.1-2, pp.3-50, 1993.
DOI : 10.1016/0167-6423(93)90021-G

URL : http://doi.org/10.1016/0167-6423(93)90021-g

E. Yu, Modelling strategic relationships for process reengineering, Social Modeling for Requirements Engineering, vol.11, 2011.

P. Soffer and C. Rolland, Combining Intention-Oriented and State-Based Process Modeling, Conceptual Modeling?ER 2005, pp.47-62, 2005.
DOI : 10.1007/11568322_4

W. D. Gray, B. E. John, and M. E. Atwood, The precis of Project Ernestine or an overview of a validation of GOMS, Proceedings of the SIGCHI conference on Human factors in computing systems , CHI '92, pp.307-312, 1992.
DOI : 10.1145/142750.142821

M. Hayashi, Hidden Markov Models to identify pilot instrument scanning and attention patterns, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme, System Security and Assurance (Cat. No.03CH37483), pp.2889-2896, 2003.
DOI : 10.1109/ICSMC.2003.1244330

A. Tversky and D. Kahneman, Judgment under Uncertainty: Heuristics and Biases, Science, vol.185, issue.4157, pp.1124-1131, 1974.
DOI : 10.1126/science.185.4157.1124

G. Khodabandelou, C. Hug, R. Deneckere, and C. Salinesi, Supervised intentional process models discovery using Hidden Markov models, IEEE 7th International Conference on Research Challenges in Information Science (RCIS), 2013.
DOI : 10.1109/RCIS.2013.6577711

URL : https://hal.archives-ouvertes.fr/hal-00803875

K. P. Burnham and D. R. Anderson, Model selection and multi-model inference: a practical information-theoretic approach, 2002.

L. E. Baum, T. Petrie, G. Soules, and N. Weiss, A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains. The annals of mathematical statistics, pp.164-171, 1970.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the em algorithm, pp.1-38, 1977.

I. H. Witten and E. Frank, Data mining, ACM SIGMOD Record, vol.31, issue.1, 2005.
DOI : 10.1145/507338.507355

A. Rozinat, M. Veloso, and W. M. Van-der-aalst, Evaluating the quality of discovered process models, 2nd WS on the Induction of Process Models, 2008.

J. Herbst and D. Karagiannis, Integrating machine learning and workflow management to support acquisition and adaptation of workflow models, Proceed. 9th Intl. Workshop on Database and Expert Systems Applications, 1998.

D. Medeiros, A. A. Weijters, and A. , Genetic process mining. In: Applications and Theory of Petri Nets, Lecture Notes in Computer Science Citeseer, 2005.

J. E. Cook and A. L. Wolf, Automating process discovery through event-data analysis, Proceedings of the 17th international conference on Software engineering , ICSE '95, pp.73-73, 1995.
DOI : 10.1145/225014.225021

S. Das and M. C. Mozer, A unified gradient-descent/clustering architecture for finite state machine induction, pp.19-26, 1994.

A. W. Biermann and J. A. Feldman, On the synthesis of finite-state machines from samples of their behavior. Computers, IEEE Transactions on, pp.592-597, 1972.

L. E. Baum and T. Petrie, Statistical inference for probabilistic functions of finite state markov chains. The annals of mathematical statistics, pp.1554-1563, 1966.

R. Agrawal, D. Gunopulos, and F. Leymann, Mining process models from workflow logs, 1998.
DOI : 10.1007/BFb0101003