
HAL Id: hal-01020982
https://paris1.hal.science/hal-01020982

Submitted on 8 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ontology-Based Resource Discovery in Pervasive
Collaborative Environments

Kimberly Garcia, Manuele Kirsch Pinheiro, Sonia Mendoza, Dominique
Decouchant

To cite this version:
Kimberly Garcia, Manuele Kirsch Pinheiro, Sonia Mendoza, Dominique Decouchant. Ontology-
Based Resource Discovery in Pervasive Collaborative Environments. 19th International Conference,
CRIWG 2013, Oct 2013, Wellington, New Zealand. pp.233-240, �10.1007/978-3-642-41347-6_17�.
�hal-01020982�

https://paris1.hal.science/hal-01020982
https://hal.archives-ouvertes.fr


Ontology-Based Resource Discovery in Pervasive
Collaborative Environments

Kimberly Garcia∗, Manuele Kirsch-Pinheiro†, Sonia Mendoza∗, Dominique Decouchant‡
∗Department of Computer Science, CINVESTAV-IPN, México DF., México

kimberly@computacion.cs.cinvestav.mx, smendoza@cs.cinvestav.mx
†Centre de Recherche en Informatique Université Paris1-Panthéon Sorbonne, Paris, France

Manuele.Kirsch-Pinheiro@univ-paris1.fr
‡(1) C.N.R.S. Laboratoire St Martin d’Heres, France

(2) Department of Information Technologies UAM-Cuajimalpa, Mexico DF., Mexico
decouchant@correo.cua.uam.mx

Abstract—Most of the business, academic and even public en-
vironments (e.g., airports and malls) offer multiple services (e.g.,
flight and hotel reservation), hardware (e.g., printers, scanners
and cameras) and software. However, it could be particularly
difficult to take advantages of all these resources without a proper
software support capable of finding resources that fulfill user’s
requirements. A user can be close to the resource he needs, but
in a crowded and busy environment, it is highly probable that
he would never find that resource without the help of a tool that
discovers and locates it. To try to overcome this problem, multiple
service discovery protocols (SDP) have been developed. Their
main goal is to promote the use of network resources by offering
some basic finding operations and by reducing configuration
tasks. Unfortunately, most of these protocols are focused on
providing support for software clients. They do not offer any
suitable tools for describing resources for both publication and
search. Consequently, users may waste their time making several
queries with different parameters. In this paper, we tackle
this issue by providing users means for semantically describing
resources and their needs effortlessly. We propose an ontological
approach to manage resources description. This proposal grants
several advantages, such as organized storage of information and
semantic-based knowledge retrieval through the use of reasoning
tools. Finally, we also present a matchmaker proposal intended
to find the best resource available for a user’s request.

I. INTRODUCTION

The ubiquitous computing [11] main objective is to in-
corporate technology into the users environment by making it
so easy to use that it would become invisible to users. They
will be able to focus on their goals instead of thinking on
the tools the environment offers. This ubiquitous computing
world, as dreamt by Weiser [11], is now becoming a reality
with the increasing on the amount of devices and information
available everywhere. People is more and more habituated to
receive information according to their location and preferences.
Not only multiple computer-based devices are getting more
popular, but it is also more and more common to have enabled
environments for providing users the ubiquitous experience.
Our work wants to go one step further by adapting such
ubiquitous environment to support collaborative work.

In collaborative ubiquitous environments, sharing resources
(e.g., devices or files) among people in a controlled way
(e.g., through the usage of restrictions and access rights) is
a necessity. In this case, the correct management of resource

information can make the difference between providing a good
response when requesting a resource or not. We argue that
creating a proper descriptive model of the shared pervasive
environment, which involves describing resources and the en-
vironment in which they are shared, constitutes the first step to
cope with the previously stated limitations. Service discovery
protocols [14] can be used to try to solve the problems de-
scribed above, but unfortunately most of them are not oriented
to work with human clients. They work with software clients,
so their support for describing resources are neither as flexible
nor as rich as a human client would need. Besides, some
protocols use a description approach based on static templates
that requires users to specify particular service characteristics.
These approaches restrict the information provided by the
service owners and, when a user needs to find a service, he
cannot specify more information than the one required by
the template. Other protocols use a more flexible approach
based on XML templates to describe services. Although this
approach allows the addition/deletion of information to/from
a service description, they are semantically poor.

It results that, without a proper support to describe re-
sources, a system dedicated to manage resources sharing could
not succeed because of the lack of suited information. This
lack makes difficult the search for a resource that actually
satisfies the users requirements. In this paper, we propose a
suited description support for heterogeneous resources that
can be shared among several collaborators. Being distributed
among several buildings of an organization, these resources are
governed by different usage restrictions (e.g., a schedule has to
be followed or a limited amount of work that can be completed
at once). We propose a semantic description that tackle this
question through an ontological approach. Indeed, ontologies
are particularly suited for knowledge sharing and for efficient
reasoning. Thanks to ontologies, we are able to describe
concepts representing resources (physical and virtual resources
human users own) and properties representing relationships
among these concepts. These relationships provide meaning to
each concept involved in the whole domain we are modeling.
Ontologies are also a central part of the matchmaking process
we propose, which consist in determining the best available
resource for a specific request. This process is not a trivial
task since it must consider not only static resource informa-
tion, but also dynamic information involving changes in the



environment. By using ontologies for describing resources,
we can perform inference and reasoning processes to discover
available resources that fulfill a request and consider dynamic
status of those resources.

This paper is organized as follows. In section II we present
the related work. Following, section III illustrates the multiple
scenarios in which an architecture for resource management
can be deployed. Here, we present a set of environments and
we introduce our case of study to validate the proposed RAMS
(Resource Availability Management Service) architecture. This
architecture is describe in section IV. Then, section V details
the set of ontologies proposed for describing shared resources.
These ontologies are the foundations of the matchmaking
algorithm presented in section VI. After, in section VII, we
illustrate in a real scenario all the RAMS architecture com-
ponents working together to provide resource sharing support.
Finally, in section VIII we present our conclusions and the
future path of our research.

II. RELATED WORK

In this section we analyze and compare some outstand-
ing works involving resource discovery. Since several works
proposing discovery protocols focus on service discovery, we
present in section II-A, some traditional Service Discovery
Protocols (SDP). Then, a comparison of features of these
protocols is made in section II-B. Finally, in section II-C a
couple of frameworks that have been recently developed to
provide context awareness capabilities to the service discovery
task are discussed.

A. Service Discovery Protocols

One of the pioneers of service discovery is the Service
Location Protocol (SLP) [13], which was developed by IETF
in order to prevent users (which take the form of applications)
from having to know the specific network location of the
required services. SLP is composed of three agents: user,
service and directory. A user agent (client) denotes a software
entity that looks for a service. A service agent (server) is
a process dedicated to announce a service, which consist of
the location of a device driver. Finally, a directory agent
denotes a software entity acting as a centralized repository
of information about the services that are published. When a
user agent needs a service, he makes a request specifying the
characteristics he needs. In response, the user agent receives
a URL, which specifies the location of the service that fulfills
his requirements. This URL has to be used by the user agent
to contact the service. In small networks, a user agent can
make requests directly to service agents through multicast
messages. The service agents allow to satisfy the request by
sending back to the user agent unicast messages containing
the service location. In bigger networks, a directory agent
is used as a cache in which service agents are registered in
order to announce their services. Announcements are refreshed
periodically to confirm that the services still available. The
user agent sends a unicast request to a directory agent rather
than a multicast request to several service agents. In this way,
SLP avoids network overloading resulting from one user agent
request.

Similar to SLP, UPnP [9] was proposed by the UPnP Forum
in order to free users from the configuration task when a

new hardware device is plugged into a computer for the first
time. UPnP allows hardware devices to automatically find the
services they need and to perform the required configuration
operations. In this way, final users (i.e., a human) can employ
hardware devices effortless. The UPnP architecture handles
two types of devices: 1) controlled devices and 2) control
points. A controlled device acts as a server, which responses
to requests coming from several control points. In a com-
plementary way, a control point acts as client, which looks
for information about the server capabilities. When connected
to the network, a controlled device publishes its services so
that the network control points can know it. Similarly, UPnP
allows a control point connected to the network to look for the
controlled devices of its interest and to subscribe to them. In
this way, the control point can get a specific device information
from the URL provided by the device within the discovery
message. Once the information about a device and its services
has been obtained, the control point can ask these services
to execute some commands and to send the results back to it.
Moreover, the control point can listen to state changes of some
devices. Finally, if the required devices have a URL to inform
about the actions performed, the control point can display them
on a browser, so that the user can control such devices or
visualize their status.

Ninja Service Discovery Service (SDS) [2] is one of the
academic proposals to service discovery. It is integrated by
three types of entities: services, clients and SDS servers. A
service is any application software with a well known interface
capable of performing any task, from a small mathematical
computing process to a task able to control a hardware device.
Clients are entities that want to discover services executed in
the network. Finally, SDS servers are secure, fault tolerant and
scalable data repositories that hold information about shared
services.

Ninja SDS uses predefined templates designed for each
type of service. These templates are XML documents that
include the capabilities and the Java RMI address of the
described services. When an announcement of a new service is
received by a SDS server, it uses hash functions over subsets
of parameters from the service descriptions in order to define
a bit vector. This vector acts as a bloom-filter that condenses
the description of the service. Once the vector is created, it is
sent to its SDS servers neighbors, which become aware of the
existence of the new service. When a SDS server receives a
request, it can apply two kinds of filters: 1) hierarchical and
2) by index. Hierarchical filter is based on parents, the SDS
server verifies if there are local matches within its children.
If no match is found, the request is rerouted upwards to try
to find a match in another level of the hierarchical structure.
In indexing filter, the SDS server verifies all neighbor filters
and in case of match, it sends the request to the proper SDS
server. Once a match is found, the correct SDS sends to the
user a XML document with information about the service and
how it can be contacted.

Jini [12] is one of the most popular service discovery
protocol. It was introduced by Sun Microsystems to share any
type of services among any type of client. Jini considers as
a service any artifact (e.g., a coffee maker) that can be rep-
resented by a Java object. The Jini infrastructure is integrated
by three protocols and three participants. The protocols are



discovery, search and union. Participants include a client, a
service provider and a look up service. A client is the entity
which looks for a service, a provider is the one offering
services and a look up service is in charge of holding the
services that are shared in the Jini system. The union and
discovery protocols allow a new service to be added to the
system. When a new service enters to the system, it looks
for a look up service to register. This search is made through
a multicast request. Once the look up service is found, the
union protocol helps the service to register itself into the look
up service. That registering process consists in making a copy
of the java object that represents the new service into the look
up service. When a client needs to find or invoke a service,
he makes a request to the look up service, which looks among
the services registered in it. In case a service satisfying the
client request is found, the look up service transfers the java
object representing the service to the client. In this way, the
client would have enough information to contact the service.

Bonjour [10] is the Apple solution for service discovery.
Its main goal is to achieve zero-configuration IP networking,
which consists in creating an IP-based network without user
intervention. This network will help users finding services
easily by avoiding the need of knowing the name of the service,
its location and the service configuration process. Bonjour is
able to locate shared devices (e.g., printers and computers) and
files (e.g., music). Since users of Bonjour look for services,
not for IP addresses, this SDP uses Multicast DNS (mDNS),
in which DNS format queries are sent using multicast. When a
service sees a query with its name, it supplies with its own IP
address. Service discovery allows applications to find out all
available instances of a given type of service and to maintain
a list of those services. This list is used to resolve service IP
address given its name. When a service is needed, a mDNS
query is sent specifying the type of service. Any service of that
type may respond with their name, which results in a list of
services where application (or user) can choose from. Service
discovery is performed only when a new type of services is
needed, so a list of service names can be gotten. Based on this
list, a client application (or the user himself) can use mDNS
requests in order to resolve service names into IP addresses,
whenever a service is needed.

B. Comparison

Figure 1 compares some interesting features of the pre-
viously studied discovery protocols. First feature considers
the discovery architecture, which refers to whether a protocol
is based on directories or not. A directory-based architecture
comprises a repository, which stores data about the registered
services, and processes service requests. From the studied
protocols, only UPnP does not follow a directory-based ar-
chitecture, since its control point searches for a service on
several controlled devices until finding one that satisfies its
requirements.

The next feature, called supported services, refers to the
types of services that can be discovered by a protocol. SLP
allows to find networking software (e.g., a device controller)
and it provides additional features allowing user agent to take
into account both applications and people. Although these
features can be implemented, SLP is not specifically oriented
to people-services interaction. UPnP is intended for physical

Fig. 1. SDP Comparison Table

devices since its main goal is to prevent users from configuring
hardware when it is plugged into a computer for the first time.
Ninja SDS and Bonjour consider both hardware and software
services. Jini is able to manage different types of services
(e.g., hardware, software and physical artifacts) wheter can
be represented by a Java object.

The communication model feature refers to the communi-
cation approach employed by a protocol to allow participants
to make requests and to announce services. Ninja SDS relies
on a pull approach to discover services. However, the others
SDPs follow both the push and pull approaches. Indeed, in
addition to allowing user entities require for services, these
SDPs allows to the services or the directories to advertise
themselves periodically in order to promote their existence.

The service description involves the way in which a proto-
col handles information about the services it manages. From
the analyzed protocols, SLP and Jini use predefined templates
to uniformly describe services and requests. Bonjour uses DNS
resource records, which specify the type and the location of the
published service. UPnP and Ninja SDS use XML documents,
which constitute a more flexible mean for service description
since they can be enriched by adding new attributes (labels)
when needed.

The information filtering feature refers to the process of
selecting messages for reception and processing. SLP groups
services into categories called scopes. UPnP allows control
points to listen to evented variables, which are specified by
an initial event message during subscription. Ninja SDS, Jini
and Bonjour do not choose the messages they receive prior to
processing them. When a provider or a user wants to either
announce his service or ask for one, he contacts an available
directory storing services. However, this directory is not chosen
amongst others considering a specific reason, but just the first
one found.

The matchmaking algorithm characteristic refers to the way
in which a protocol determines which service can satisfy a
request. In SLP, either a directory agent or a service agent
compares the URL of the announced services with the user



agents request to determine whether a service that fulfills this
request exists. UPnP also makes comparisons between the
device type and the offered configuration services in order to
find the most adequate one. Meanwhile, Bonjour just compares
type of services. Ninja SDS uses a mechanism called bloom
filter, which consists in gathering each service attributes into
sets and applying hash functions on these sets to obtain a
vector that represents the service. Then, each service vector
is compared with the request vector in order to determine
whether a service satisfies the clients needs or not. Jini makes
comparisons between the description and request templates to
find matches.

From the comparison described above some important
drawbacks of the already developed Service Discovery Proto-
cols can be detected. Most of the SDPs were mainly designed
for applications asking for services, so they provide minimal or
null support for human users. The way the offered services and
requests are described is also an improvable feature, because
some of the studied SDPs use predefine templates that should
be filled out to describe offered or required services. This
description process limits users to express their needs. It is also
important to notice that SDPs do not consider the environment
nor the actual conditions of a service or of the user asking for
a request.

C. Frameworks

The Adaptable Intelligent Discovery of context-Aware Ser-
vices (AIDAS) framework [8] offers contextual service discov-
ery. AIDAS is integrated by three type of entities: 1) services,
which represent applications available on the network; 2) users,
which correspond to either humans or applications looking
for a service and 3) devices, which refer to the computers
(mobile devices mainly) used to access the system. The AIDAS
framework architecture is based on two major logical sets
of modules: the discovery management and the configuration
management sets. The discovery management set includes: a)
a context manager in charge of considering the changes in
the environment and b) the profile matching engine, which
is home of the semantic matchmaking algorithm in charge of
comparing each service capability to the request made. AIDAS
considers non exact matches by incorporating subsumption op-
erations; their results will affect the matching degree between
the offered and the required services. Finally, c) the discovery
manager is responsible for providing a list of visible/accessible
services to users based on their context. This modules uses the
profile matching engine and the context manager to achieve its
duty. When a service provider wants to add a new service, he
describes it by filling static templates, which are syntactically
checked before being stored in a service registry allocated by
the discovery management services set. When a user starts a
discovery session, his and the device profiles are retrieved and
assessed by the discovery management modules to generate a
view of accessible services according to the user context (i.e.,
location). A user also has the possibility to make a specific
request about the service he is looking for. Finally, the user
gets as response a lists of services and a reference to contact
them.

The DAIDALOS (Designin Advancednetwork Interfaces
for Delivery and Administration of Location Independent,
Optimized personal Services) project [6] proposes to add a

semantic layer to a traditional service location protocol (e.g.,
SLP or Jini). This semantic layer consists of: 1) an ontology
where punctual characteristics of services are expressed, and
2) a contextual manager, which holds pointers to contextual
sources (e.g., sensors) of the entities participating in the pro-
tocol. These entities are: 1) a user, who can be either a person
or an application starting a discovery process and will receive
the list of found services, 2) the service, which represents
an application or device a user is looking for and 3) the
environment, referring to the pervasive entity in which the user
is submerged. When a user needs a service, it makes a request
to a service discovery server specifying the basic and semantic
characteristics a service should have to fulfill its request. The
user also provides the pointer to his context source. Then, a
service discovery server processes the user request by using
three types of filters: basic filter, semantic filter and context
filter. The basic filter uses the traditional service discovery
protocol filter engine to select a set of services of the correct
type. This set is then directed to the semantic filter, where
services that have the exact same characteristics the user is
looking for are selected and then passed to the context filter.
In this phase, the service context requirements are evaluated to
determine if they fit in the user and environment conditions.
Then, the filter compares the users contextual requirements
with the user and environment conditions to obtain a selected
set of services that may satisfy the users request in a better
way.

In this paper, we present the RAMS (Resource Availability
Management Services) architecture, which is mainly focused
on facilitating the development of groupware applications that
manage the availability and suitability of requested human,
virtual (e.g., files and software) and physical resources (e.g.,
laptop, scanner and tablet). These resources are described in a
semantic support consisting of a set of expressive ontologies.
The environment in which all the considered resources are
involved is also modeled into an ontology. This semantic de-
scription enables the matchmaking process to be more complex
and accurate. Because, instead of just comparing keywords
as traditional service discovery protocols do, the matchmaker
algorithm will try to match offers and requests of services
according to their actual meaning. As the RAMS architecture
is designed to operate in pervasive collaborative environments,
the preferences of human resources and the conditions on their
changing environment are treated with high concern.

III. THE RAMS ARCHITECTURE SCENARIOS

The RAMS architecture is being constructed to provide
support for resource sharing in multiple environment of dif-
ferent sizes. From small places where there are different but
quite limited number of resources to places full of a large
quantity and variety of resources. To illustrate the versatility
of the RAMS architecture, three types of institutions where
resource sharing management is vital are briefly described.

Design Agency

In a design agency, a library of reusable virtual resources
(e.g., photoshop elements, css files or JavaScripts) is essential.
These elements can be just the foundation of a new and
completely different creative work, but they will still consume
time and work of a designer. So, to make a profit on projects



with a tight budget, a good management of these virtual
resources is needed.

In most of the agencies, designers store their work in
their own computers. In bigger and more organized design
agencies, a shared repository is kept. Even though, this is a
basic solution for virtual resource sharing, new designers or
even designers from different teams could be clueless about
the existing elements in the repository if a good description
is not provided. Additionally, designers are in risk of waisting
much time trying to find something they are not even sure it
really exists. A variety of physical resources are also shared
in these type of environments. From computational devices
such as printers, digital cameras and design tables to meeting
rooms used by designers to exchange their creative ideas.
By using a computational support to manage resources, the
time spent doing tedious and repetitive stuff could decrease,
giving designers more time to produce excellent results for
their clients.

Hospital

Everyday doctors discuss patients cases in meeting rooms
enabled with computer equipment. These meetings can be
already scheduled, such as when nurses switch shifts and give
report to other nurses about the health of patients, or there can
be urgently needed meetings where various specialists need
to participate to give a diagnosis or to discuss a treatment.
Any of these meetings commonly leads to the scheduling of
test and therapies. This situation involves the management of
human (i.e., nurses and physicians), physical (e.g., meeting
room and medical/computer equipment) and virtual (e.g., pa-
tients medical records) resources. Another evident situation
of management resource sharing is present in large hospital
systems with multiple medical campuses, where the equipment
used is often taken with patients who are transferred between
hospitals. These transfers lead to the loosing or misplacement
of vital equipment which along with the time people spend in
locating available equipment cause a big financial impact.

Institutions as big and dynamic as hospitals arise many
challenges in resources management, because of the mobility
of not just human but also physical resources. However, the
current RAMS architecture can be enhanced to fulfill all
the requirements of this type of institutions by developing
additional components (e.g., a physical resource tracker).

University and Research Center

A multidisciplinary researcher center full of many het-
erogenous resources is the case of study we have chosen
to prove the RAMS architecture. This environment is of
our interest, because in our institution we have encountered
situations where a shared-resource support will be of great
utility. The bigger the institution is, the smaller the prob-
abilities of knowing all the existing resources in it are. A
computational support for resource sharing also allows to share
resources among unknown colleagues from the same institution
but different departments. Thus human relationships are also
promoted. Following, a scenario is presented to give a better
idea of the situations the RAMS architecture deployed in a
university or research center is targeted to solve.

Miss Andrew requires a portable interactive whiteboard
to give a Ubiquitous Computing conference in a nearby

auditorium. She has prepared some interactive material, as she
likes to provide interesting and fun presentations. However,
in the auditorium where she is going to give the talk, there
is not an interactive whiteboard installed. As Miss Andrew
considers really important to keep the audiences attention, she
decides to look for a portable interactive whiteboard among
her colleagues. In section VII the details of how this request
is solved by the implemented application based in the RAMS
architecture are presented.

IV. THE RAMS ARCHITECTURE

To accomplish our goal of providing a semantic support for
finding the best resource available for a collaborators request
in a pervasive environment, we propose a set of ontologies
and a Matchmaking Service. The set of ontologies store and
manage static (e.g., capabilities and technical characteristics,
usage policies and access rights granted to colleagues) and
dynamic information (e.g., human resource goes to a different
office). The Matchmaking Service components rely on these
both types of information to select the most suitable and
available resources capable of satisfying a consumer request.
To obtain these static and dynamic information some other
components of the RAMS architecture are used. Following,
we give an overview of the proposed architecture.

The RAMS architecture is based on the asynchronous
publish/subscribe model [5], which was chosen above others
message models (e.g., message passing) because most of its
principles can be directly applied to end-users of RAMS-
based applications. In this way, collaborators can play the roles
of producers and/or consumers of events related to the state
of shared resources (e.g., presence, location and availability).
However, unlike the publish/subscribe model, where produc-
ers do not know the consumers of their messages and vice
versa, users of groupware applications should identify their
colleagues in order to define filters that control the scope of
event production and consumption.

The RAMS architecture defines two types of roles that
collaborators might play: 1) producers, who publish resources
to share them with their colleagues and generate events to
change their state; and 2) consumers, who subscribe to the
system to find resources they need to use and receive events
about the state of resources they are allowed and interested in.

The RAMS architecture also defines actions that collabora-
tors playing these roles can accomplish through RAMS-based
applications. A producer can perform the following actions:

1) Publishing a resource: when a producer wants to
share a resource with his colleagues, he can publish
it using functionalities that allow him: a) to describe
the resource in terms of its capabilities and technical
characteristics; b) to grant his colleagues access rights
on the resource; and c) to define policies that regulate
the resource usage.

2) Producing application events: a producer can change
the state of his resources at any moment, e.g., to
temporarily set a resource as unavailable or to activate
the do not disturb mode.

3) Modifying resource information: a producer can mod-
ify information about his published resources when
needed. Modifiable information concerns resource



Fig. 2. RAMS architecture

capabilities and technical characteristics, access rights
and usage policies.

4) Canceling a publication: a producer can stop sharing
one or more of his published resources whenever he
wants.

A consumer can perform the following actions:

1) Subscribing to resource state information: a consumer
interested in receiving state information about some
published resources can subscribe to them. In addi-
tion, he can activate information filters to only receive
notifications about the resources he is interested in at
a given moment.

2) Searching for a resource: if a consumer needs to
use some resources, he can use functionalities that
allow him to describe the technical characteristics he
is looking for.

3) Canceling a subscription: at anytime, a consumer can
stop receiving state information about some resources
he is subscribed to.

By granting access rights and specifying usage policies, a
producer will be certain that his resource will be reached just
by people he relies on and that the resource is going to be
treated properly.

The components of the RAMS architecture are classified
according to the type of service they provide into: human
interaction (see Fig. IV-A), preprocessing of data (see Fig.
IV-B) and human recognition (see fig IV-C).

The human interaction category consist of a Broker that
provides the application developer with services for imple-
menting an interaction support between collaborators and
RAMS-based applications. Particularly, the Publication Service
(see Fig. IV step #1) allows collaborators playing the producer
role to describe their resources in terms of technical charac-
teristics, to define usage policies and to give access rights
to colleagues they want to share their resources with. The
Publication Service sends that resource-related information to
the Topic-based Filter (see Fig. IV step #4), which classifies
it into the right ontology according to the type of resource
that is being published (e.g., human or virtual resource). The
Publication Preprocessor structures the classified information

received from the Topic-based Filter (see Fig. IV step #5) to
make it comprehensible for the RAMS Ontologies (see Fig.
IV step #6), which are in charge of storing and managing it.

On the other hand, collaborators playing the consumer role
can interact with RAMS-based applications by means of the
Subscription Service (see Fig. IV step #2), which allows them
to describe the type of resources or the specific resource they
are interested in. The Subscription Preprocessor structures the
resource descriptions obtained from the Subscription Service
(see Fig. IV step #7) to make them understandable for the
Matchmaking Service (see Fig. IV step #8).

From relevant information retrieved from the RAMS On-
tologies (see Fig. IV step #9), the Matchmaking Service
(cf. see Section VI) can select authorized resources, whose
attributes correspond to the technical descriptions provided by
collaborators when subscribing to receive information about
a resource or when emitting specific requests. As a result of
this matchmaking process, a set of resources that potentially
satisfies the consumers request is obtained. However, these
resources cannot be considered the best match for the request if
they are not available for the consumer at a given moment. To
verify a resource availability, the Matchmaking Service takes
into account dynamic information of these resources provided
by the Multimodal Notifier (see Fig. IV step #10) and the
Management Tools (see Fig. IV step #3). The Multimodal
Notifier in charge of communicating the decision of the
Collaborator Selector. It determines the presence and location
of a human resource by considering information coming from
a Face Recognizer and a Voice Recognizer. These components
will ensure an accurate response about the identity and location
of a collaborator. The Management Tools allow producers to
modify their availability or the one of their published resources
at anytime.

When a consumer is looking for a physical resource, the
set of suitable and available resources selected by the Match-
making Service is transmitted to the Physical Resource Locator
(see Fig. IV step #11), which asks the Human Face Recognizer
for the consumers current location (see Fig. IV step #12) in
order to determine the closest resource to him and the path
he should follow to reach it. The results produced by either
the Physical Resource Locator (when looking for a physical
resource) or the Matchmaking Service (when searching for a



human or virtual resource) are finally delivered to the consumer
(see Fig. IV step #13).

V. THE RAMS ARCHITECTURE ONTOLOGIES

To present a proper explanation of the ontologies [1]
designed for the RAMS architecture in section V-A some
basic ontology concepts are introduced. Following, section V-B
presents the taxonomy of each one of the ontologies of the
RAMS architecture. Later, section V-C introduces the group
of object properties proposed to create relationships among
individuals belonging to the same or different classes. Finally,
in this same section the utility of the same object properties
characteristics and restrictions is explained.

A. Ontology Vocabulary and Representation

To make this paper self contained some ontology vo-
cabulary and the corresponding graphical representation are
introduced:

• Individual: It is an object of the interest domain.
Individuals are also known as instances of classes and
are represented by a diamond.

• Property: It is a binary relationship between two
individuals or an individual and a value. There are
three types: 1) data properties (represented by a green
rectangle) relate an individual from a class of the
interest domain to a XML Schema Datatype value or
a RDF literal (i.e., individual-value relationship); 2)
object properties (represented by a blue rectangle) link
individuals belonging to the same or different classes;
and 3) annotation properties (represented by a yellow
rectangle) allow to provide additional information
about individuals, properties, and classes.

• Class: It is a concrete representation of a concept.
Thus, classes represent individuals that are similar
among them in some way or another and are presented
by a circle.

• Quantifier restrictions: They are defined over object
properties and can be either existential or universal.
By defining an existential restriction, an individual
can belong to a class just if it is related to at least
one individual from such a class. Universal restrictions
define the type of individuals an individual can be re-
lated to through the object property with the restriction
attached to it.

• Closure axiom: It is defined over an object property
by creating a universal restriction, which is in charge
of limiting the types of individuals that can be related
through that property to the ones considered in the
existential restrictions.

B. RAMS Architecture Ontology Taxonomy

At initial states, the resource description modeling for the
RAMS architecture included a single ontology. However, that
ontology was growing really fast as the proposal became more
ambitious. So, it was decided to split the single ontology into
four. This set of ontologies was carefully designed to cover
the entities description needs for different resource sharing

Fig. 3. HumanResource Ontology Hierarchy

environments. Four our case of study, which is a research
center, we added a fifth ontology that describes the research
areas and fields of study present in the organization we are
validating the RAMS architecture, these elements are pretty
specific of our research center.

All the classes in the RAMS ontologies are disjoint, be-
cause each class describes entities with unique characteristics,
these classes can be part of a hierarchy but each one is
different. None of the individuals of the RAMS system should
belong to more than one class.

The Protégé tool [3] was used to create the taxonomy
of the proposed set of ontologies. This tool uses the OWL-
DL language which creates ontologies in a hierarchical class
structure, where each class extends from the Thing class.
Following, we give a brief summary of each one of the
ontologies of the RAMS architecture.

Human Resource Ontology

This ontology (see Figure 3) includes classes related to
individuals representing people that are part of an environment
where a RAMS-based application is deployed. The classes
included in the first level of the ontology hierarchy are:

HumanResource. Each individual belonging to this class
represents a collaborator involved in the resource-sharing en-
vironment. A collaborator shares some of his personal infor-
mation by either explicitly providing it or by agreeing to be
observed by tools that obtain this information in an automatic
or semiautomatic way.

JobPosition. Individuals belonging to this class repre-
sent actual job positions, which are linked to individuals
representing collaborators. The job position information of a
collaborator facilitates the granting of access rights and the
definition of usage restrictions by classifying collaborators
according to the job they perform.

Physical Resource Ontology

From the Thing class extends the PhysicalResource class,
which is intended to group any kind of physical resources
shared in an organization. The second level of the ontology
hierarchy includes the following classes:

Building. The purpose of this class is to represent the
physical environment where the resources are shared. Classes
for the different type of areas (e.g., class room and meeting
room) group individuals that represent an actual place in the
building.

Hardware. The subclasses extending from this class cate-
gorize individuals representing actual devices shared by col-
leagues (e.g., computer and projector).

Virtual Resource Ontology



From the Thing class extends the VirtualResource
class, which groups all individuals representing virtual re-
sources according to their type. The individuals can be-
long to the classes: File, DriverPlugin, Database or
Software classes.

Context Ontology

One of the main characteristics of our proposal is the
interest in performing resource discovery considering the envi-
ronment where collaborator asking for resources are located.
So, variables that describe the changes in this environment
have to be evaluated to determine the availability degree of
a resource. These variables are categorized in the following
subclasses of the context ontology (see Figure 4):

AvailabilityMode. It is an enumerated class that groups
some particular individuals, such as the doNotDisturb
and okToDisturb individuals. Individuals from the
HumanResource class are related to one of the individuals
from this class through the hasAvailabilityStatus ob-
ject property to know whether a human resource has manually
activated the do not disturb mode or not, which means he
agrees to be bothered.

Company. This is another enumerated class holding the
accompanied and alone individuals. This class is used to know
whether a person is alone or accompanied by somebody. A
human resource is related to one of the two individuals through
the hasCompanyStatus object property.

Restriction. This class holds individuals representing
a usage restrictions defined by a producer. To specify the
usage restriction, each individual of this class is related to
data properties that define its metric and allowed value. So,
an individual from the HumanResource class is related
to an individual of the Restriction class by the ob-
ject property hasToSatisfy and an individual from the
Restriction class is related to an individual from the
PhysicalResource or VirtualResource class by the
isAssociatedTo object property

Task. This enumerated class holds the move, repair and
use individuals. A human resource is related to one or some
individuals from this class to denote the type of actions he can
perform over a virtual or physical resource.

UsageStatus. This class holds the Free and InUse
subclasses. An individual from the PhysicalResource
or VirtualResource classes is related to an individual
from one of these subclasses to denote whether someone is
using it or not. This is not an enumerated class because their
individuals contain information about the amount of time the
resource will be free or in use. Thus, each individual should
be unique.

Institution Information Ontology

This ontology is open to group all the organization-
specialized classes needed to complete the model.

Meta-Ontology

The function of this ontology is to relate all five ontologies
described above by defining object properties (see Figure 5).
It holds the HumanResource, PhysicalResource and
VirtualResource classes located in the ontologies with

Fig. 4. Context Ontology Hierarchy

Fig. 5. Meta-Ontology Hierarchy

the same name. The Position class is part of the Human
Resource ontology and the Context class groups all the
classes modeled in the Context Ontology.

C. Object Properties

As mentioned earlier object properties are useful to give
meaning to an ontology as they relate instances of classes that
otherwise are independent. Nine groups of object properties
have been specified to replicate in our semantic model the
interaction that different individuals have in the real world.
These groups are classified in:

1) humanResourceProperty. This group of properties
can be customized according to the content of the
institution information ontology.

2) locationProperty. This set of properties relate
individuals from the PhysicalResource,
HumanResource and VirtualResource
classes to individuals representing physical or virtual
places.

3) resourceRelationProperty. Properties grouped by this
property specify the owner or responsible of a vir-
tual or physical resource by relating individuals
from the HumanResource class to individuals from
the PhysicalResource or VirtualResource
class.

4) constraintProperty. Properties categorized in this
group create a three-individual-relationship be-



tween individuals from the HumanResource class
to individuals from the Restriction class
and from this last class to individuals from
the PhysicalResource or VirtualResource
class. The purpose is to define which usage restric-
tions has to be satisfied by a human resource when
using a virtual or physical resource.

5) taskProperty. Some of the object properties of this
group also define three- individual-relationships.
These properties define who is authorized to perform
a task over a virtual or physical resource. Thus, a
collaborator who is sharing a resource can specify
the privileges he wants to grant to the collaborators
he shares his resource with.

6) usageStatusProperty. The properties grouped in here
allow to identify whether a physical resource is being
used at a given moment or whether it is free.

7) companyProperty: This group holds object prop-
erties that define if an individual from the
HumanResource class is alone or accompanied.

8) jobPositionProperty. Object properties of this cate-
gory are useful to create relationships between in-
dividuals from the HumanResource class and the
JobPosition class to determine the job they per-
formed inside the organization.

9) workRelationProperty. The object properties inte-
grating this group specify working and hierar-
chical relationships among individuals from the
HumanResource class.

Object Properties Characteristics and Closure Axioms

The meaning of the object properties can be of more
value if their characteristics are determined. For that reason,
each object property of the proposed model was analyzed
and their suitable characteristics were determined. Following
we present the most relevant characteristics considered along
with an object property of the actual ontology of the RAMS
architecture.

Inverse properties. They define relationships in both directions
(i.e., from individual a to individual b and from b to a). As the
isLocatedAt object property is the inverse of the allocates
property. So, the following relationship can be established:

Building - allocates - Hardware
Hardware - isLocatedAt - Building

Functional properties. An object property with this charac-
teristic can relate at most to one individual. An individual
belonging to the Hardware class (i.e., a device) can be located
at just one place at a time, so the relationship is functional:

Hardware - isLocatedAt - Building

Transitive properties. This characteristic defines that an ob-
ject property relating an individual a to individuals b and
c is capable of relating individual a to individual c. The
isColleagueOf object property has this characteristic,
making possible that different individuals from the Human-
Resource class relate to each other.

Symmetric properties. An object property with this charac-
teristic acts as its own inverse property. So, the property is
able to relate individual a to individual b and individual a to
individual b. So, The following relations are possible thanks
to this characteristic:

Restriction - isAssociatedTo - Hardware
Hardware - isAssociatedTo - Restriction

Irreflexive properties. An irreflexive object property relates
individuals that are different from each other. In the RAMS
ontology set, all of the object properties are irreflexive.

Closure Axioms. Some of these axioms are proposed to com-
plete our ontology model. As shown above, the isLocatedAt
object property relates individuals from the VirtualResource
class to individuals from the Computer class. Over this rela-
tionship an universal and a existential restriction are defined.
So, the axiom states that a virtual resource has to be located
at least in one computer and that it can only be located at a
computer.

VirtualResource - isLocatedAt only - Computer
VirtualResource - isLocatedAt some - Computer

Data Properties

It was necessary to identify the data properties (e.g., storage
capability of an external hard drive) that would create the
best description for the virtual and physical resources that the
RAMS architecture proposes as generic for any environment.
Thus, a survey was designed and applied to 100 potential users.
They chose from many characteristics the ones they considered
were more useful to know when looking for a resource. It is
important to remember that the RAMS architecture can be
enhanced or customized to fit any resources and their charac-
teristics needed for deployment in a specific environment.

VI. RAMS ARCHITECTURE MATCHMAKER

The RAMS architecture matchmaker exploits the power of
the ontologies by not just treating them like repositories but by
taking advantages of their semantic nature. In fact, the actual
implementation of the ontologies separates de information
about resources (i.e., population) from the formal model of the
domain of study. Those, the model remains intact every time
a new individual is created and every time a new relationship
among individuals is defined.

To accomplish the goal of considering the resources and
the environment where they are shared, a matchmaker service
consisting of two phases is proposed. In the first phase the
resources able to fulfill the technical characteristics and/or
capabilities of a request are categorized into different classes
that denotes their availability degree. The second phase is
activated by an action that triggers a rule that causes changes
in the availability degree of a resource.

The description of an individual representing a resource
is treated as a policy stored in an owl file. This description
includes the technical characteristics or capabilities of the re-
source, the relationships that determine the collaborators access
rights and the defined usage restrictions over this permissions.
A collaborator request is also treated as a policy, which should
be matched against a policy describing a published resource.
In the first phase of the matchmaking process, the individuals
representing shared resources are queried using SPARQL [7]
to get a list of resources that satisfy a collaborator request in
terms of capabilities and/or characteristics. Then, each resource
that a consumer is allowed to use will be classified according to
a set of rules defined in SWRL[4] language. These variations
of availability differ for each type of resource. So, a physical



resource is treated distinctly from a virtual or human resource.
For a physical resource, a resource that a consumer is allowed
to use can be:

• free. In case no one is using the resource

• job can be completed. The usage restrictions specified
by the producer of a resource allows the consumer to
achieve the resources he needs

• reachable. For a resource inside a restricted place (e.g.,
an office) it is necessary that some able to give access
to it is inside the same place where the resource is
located. A resource classified as reachable does not
state that the owner or responsible inside the office is
available. Thus, the next category is presented

• owner is available. This category applies also to re-
sources inside restricted places, meaning that a col-
laborator allowed to give access to a resource agrees
to be disturbed at a given moment.

The first step is to know if a consumer is allowed to
perform a task (e.g., use) over a resource. If the consumer
is allowed, then, the resource will be classified in one or more
of the categories presented above. The SWRL rule presented in
(1) classifies a physical resource as allowed to a consumer if an
individual ?consumer that belongs to the HumanResource
class has a relationship through the canPerform object
property to an individual ?task from the Task class and the
individual ?resource (representing the assessed resource) from
the Hardware class has a isPerformedOn relationship
with the ?task individual.

HumanResource(?provider) (1)
∧Hardware(?resource)

∧ Task(?task)

∧ canPerform(?consumer, ?task)

∧ isPerformedOn(?task, ?resource)

→Allowed(?consumer, ?resource)

To provide a real pervasive environment where changes in
the environment are reflected in the availability of a resource,
the second phase of the matchmaking process was planned.
This phase consists of another set of SWRL [4] rules that
are triggered if a context situation occurs. The rule presented
in 2 is activated if a producer gets busy and decides to
change his availability status to do not disturb through the
management tools included in the RAMS architecture. This
rule will classify a resource that was in the owner is available
category to reachable if the ?provider who is an individual
from the HumanResource class, has a relationship with
the ?doNotDistrub individual from the AvailabilityMode
class through the hasAvailabilityMode object property
and the individual ?resource from the Hardware class as long
as the ?provider have a isLocatedAt relationship to an
?office, which is an individual from the Building class.

HumanResource(?provider) (2)
∧AvailabilityMode(?doNotDisturb)

∧Hardware(?resource)

∧Building(?office)

∧ hasAvailabilityMode(?provider, ?doNotDisturb)

∧ isLocatedAt(?resource, ?office)

∧ isLocatedAt(?provider, ?office)

→Reachable(?resource)

Thus, rules are defined for each considered situation and they
differ from one type of resource to another.

VII. RAMS ARCHITECTURE VALIDATION TEST

Miss Andrew (from section III) is interested in using a
UBoard, which is a portable interactive whiteboard. She prefers
this device because she is familiar with it and the required
MINT software is already installed in her laptop.

By using an application based in the RAMS architecture,
Miss Andrew expresses that the type of resource she needs is a
portable interactive whiteboard; she also makes known that she
prefers a UBoard, but she is open to other device from the same
type. Thus, the request will be treated by the components of the
RAMS architecture. The Matchmaker will evaluate dynamic
and static information of the already published resources. From
the static information four possible matches are found:

1) A UBoard belonging to Mr. Fowler;
2) An ONfinityCM2 portable white board owned by

Miss Park;
3) A public UBoard guarded by the academic secretary;

and
4) An eBeam interactive whiteboard property of Mr.

Thomas

The static information also reveals that Miss Andrew will
have permissions assigned to use these four devices if he
satisfies the following restrictions:

1) Mr. Fowler is willing to share his UBoard with Miss
Andrew whenever it is available;

2) Miss Park shares his ONfinity CM2 with Miss An-
drew from Wednesday to Friday afternoon;

3) The public UBoard can be used by any collaborator
at any moment; and

4) Mr. Thomas does not share his whiteboard with Miss
Andrew on Tuesday because he gives a lecture in
another university; therefore, he is not present to give
access to his whiteboard.

According to the restrictions determined by the static
information of these resources, Miss Andrew is allowed to
use whichever of these four resources, because she is making
his request on a Thursday at 2 p.m. In this way, restrictions in
all four resources are satisfied.

The next step on selecting the best resource is to evaluate
their dynamic information to compute their availability. The
first resource evaluated is the public UBoard. Public resources
are always evaluated firstly because it is faster to compute their



availability. Due to the public resource independent character,
there is no need to obtain the owners or responsibles location
and availability as in the case of private resources. From the
evaluation of dynamic information, it was deduced that:

1) Mr. Fowlers UBoard is free, reachable and the owner
is available. The RAMS components determine no
one is using the UBoard and that Mr. Fowler is
inside his office and management tools reveal he is
available;

2) Miss Parks ONfinitu CM2 is also free, but the RAMS
Face Recognizer locates her in the lunchroom. Con-
sequently, she cannot give access to the whiteboard
that is inside her office;

3) The public UBoard is being used by another professor
and

4) Mr. Thomas eBeam whiteboard is equally free, but
the RAMS Face Recognizer determines he is not
inside his office, he is working with a colleague
in a contiguous office. However, Miss. Dubois, Mr.
Thomas PhD student, is inside her advisors office and
she is available and allowed to give access to her
advisors resources.

Considering this information, the RAMS Matchmaker de-
termines that Mr. Fowlers UBoard and Mr. Thomas eBeam are
suitable in terms of technical characteristics. They are free,
reachable and the owner is available, so they will satisfy Miss
Andrews requirements. So, the Physical Resource Locator
is used to compute the closest resources to Miss Andrew.
The Physical Resource Locator relies on the RAMS Face
Recognizer to obtain Miss Andrews location and finds out that
Mr. Fowlers UBoard, is the best option available for her.

VIII. CONCLUSION AND FUTURE WORK

The objective of our work is to provide a computer
support for finding available resources by creating a pervasive
collaborative environment. To achieve this objective, an ontol-
ogy based matchmaking approach is provided. This semantic
approach consists of a customizable model expressed in a set
of ontologies that suits many different type of organizations. A
semantic approach is really useful because the resources and
the environment itself can be accurately represented as they are
and behave in the real world. This paper explains in detail how
this set of ontologies was designed and constructed. Through
the creation of class taxonomies more information can be given
about the nature of the participants; data properties are helpful
to characterize each instance of the classes, whereas object
properties are needed to relate these instances. Properties
restrictions are defined to emphasize the allowed and necessary
relationships between individuals. This model is the founda-
tion of the matchmaker, which treats individuals representing
resources and requests from collaborators as policies that need
to be matched. The matchmaker is able to give an accurate
and up to date response when a request of a collaborator
is made by querying the ontologies about resources already
shared and responding to changes in the environment through
the activation of defined rules.

The proposed ontology model and the matchmaker use
the components of the RAMS architecture to accomplish
their tasks. The RAMS provides an architecture integrated

by components that can be grouped according to the task
they perform in: 1) human interaction, which involves the
publish and subscribe services in charge of interacting with
collaborators interested in either sharing resources or using
resources they do not own; 2) preprocessing, containing com-
ponents capable of transforming the information coming from
collaborators to information that the ontologies can understand
and 3) human recognition, which are a set of components in
charge of identifying and locating collaborators.

Many traditional service discovery protocols describe ser-
vices in a limited way and use keyword searches. This has
been hardly criticized due to the lack of expressiveness in
the descriptions and the tendency to get wrong or null results
because exact syntactic matches have to be found. Thus, a
semantic approach works better for a resource sharing perva-
sive environment because even if the information about a user
request is reduced, more information can be discovered when
performing the request matching process.

The current state of our research lead us to keep work-
ing in the implementation of our matchmaking algorithm to
consider more contextual situations. We will also evaluate
its performance by putting in to work in our case of study
(our institution) along with all the components of the RAMS
architecture. The voice recognizer is also still in development.
So, some more work has to be completed to bring all the
components of the RAMS architecture together.

REFERENCES

[1] A. Dean; J. Hendler, Semantic Web for the Working Ontologist: Effective
Modeling in RDFS and OWL, Elsevier, April, 2008

[2] S. Herborn, Y. Lopez and A. Seneviratne, A Distributed Scheme for
Autonomous Service Composition, In Proceedings of the First ACM
International Workshop on Multimedia Service Composition, pp. 21-30,
Singapore, November, 2005.

[3] M. Horridge et. al., A Practical Guide To Building OWL Ontologies
Using Protg 4 and CO-ODE Tools, Edition 1.3, University of Manchester,
March, 2011

[4] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean. SWRL: A Semantic Web Rule Language Combining OWL
and RuleML. W3C Member Submission, 21 May 2004. Available at
http://www.w3.org/Submission/SWRL/.

[5] G. Muehl, L. Fiege, and P. Pietzuch, Distributed Event-Based Systems,
First Edition, Springer-Verlag, Heidelberg, Germany, 2010.

[6] V. Suraci, S. Mignanti and A. Aiuto, A Context-aware Semantic Service
Discovery, In Proceedings of the 16th IST Mobile and Wireless Com-
munication Summit, IEEE Computer Society, Budapest, Hungary, July,
2007.

[7] SPARQL Query Language for RDF, E. Prud’hommeaux, A.
Seaborne, Editors, W3C Recommendation, 15 January 2008,
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/ . Latest
version available at http://www.w3.org/TR/rdf-sparql-query/.

[8] A. Toninelli, A. Corradi and R. Montanari, Semanitc-based Discovery to
Support Mobile Context-aware Service Access, Computer Communica-
tions, vol.31-5, pp. 935-949, March, 2008.

[9] UPnP Forum UPnP Device Architecture 1.0, Contributing Members of
the UPnP Forum, October, 2008.

[10] K. White, Apple Training Series Mac OS x Support Essentials, Peachpit
Press, Berkeley, CA ,USA, 2007.

[11] M. Weiser, The Computer for the 21st Century, SIGMOBILE Mob.
Comput. Commun. Rev., ACM, pp., 3-11, New York, NY, USA, 1999.

[12] R. Zhao, J. Y. Zhi, G. D. Liu; , Research and implementation of dis-
tributed testing system based on Jini technology, Antennas, Propagation
& EM Theory (ISAPE), 2012 10th International Symposium on, pp.1260-
1263, October, 2012.



[13] W. Zhao and H. Schulzrinne, Enhancing Service Location Protocol for
Efficiency, Scalability and Advanced Discovery, Journal of Systems and
Software, vol. 75, num. 1-2, pp. 193-204, February, 2005.

[14] F. Zhu, M. Mutka, and L. Ni, Service Discovery in Pervasive Comput-
ing Environments, IEEE Pervasive Computing, vol. 4, pp. 80-90, October-
December, 2005.


