Material Needs Forecast for Product Lines, a Bayesian-based Analysis Approach

Abstract : Among the many product line analysis operations, the computation of material needs for the production of reusable components is one of the most challenging issues. This paper aims at an automatic forecasting of reusable components procurement starting from a product line model. The proposed approach exploits Bayesian networks produced from product line models. The approach is applied on a case study developed at a motor company. Results show effectiveness of the proposed approach while scalability has not yet been reached.
Type de document :
Communication dans un congrès
25th International Conference on Software and Systems Engineering and their Applications (ICSSEA), Nov 2013, France
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal-paris1.archives-ouvertes.fr/hal-01071290
Contributeur : Raul Mazo <>
Soumis le : vendredi 3 octobre 2014 - 15:49:28
Dernière modification le : lundi 6 octobre 2014 - 10:57:23
Document(s) archivé(s) le : vendredi 14 avril 2017 - 15:34:37

Fichier

Material_Needs_Forecast_for_Pr...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01071290, version 1

Collections

Citation

Raúl Mazo, Gloria-Lucia Giraldo-Gómez, Leon Jaramillo, Camille Salinesi, Cosmin Dumitrescu. Material Needs Forecast for Product Lines, a Bayesian-based Analysis Approach. 25th International Conference on Software and Systems Engineering and their Applications (ICSSEA), Nov 2013, France. 〈hal-01071290〉

Partager

Métriques

Consultations de la notice

66

Téléchargements de fichiers

784