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ABSTRACT 
Understanding people’s goals is a challenging issue that is met in many different areas such as 

security, sales, information retrieval, etc. Intention Mining aims at uncovering intentions from 

observations of actual activities. While most Intention Mining techniques proposed so far 

focus on mining individual intentions to analyze web engine queries, this paper proposes a 

generic technique to mine intentions from activity traces. The proposed technique relies on 

supervised learning and generates intentional models specified with the Map formalism. The 

originality of the contribution lies in the demonstration that it is actually possible to reverse 

engineer the underlying intentional plans built by people when in action, and specify them in 

models e.g. with intentions at different levels, dependencies, links with other concepts, etc. 

After an introduction on intention mining, the paper presents the Supervised Map Miner 

Method and reports two controlled experiments that were undertaken to evaluate precision, 

recall and F-Score. The results are promising since we were able to find the intentions 

underlying the activities as well as the corresponding map process model with satisfying 

accuracy, efficiency and performance. 

 

Keywords: intention mining, trace, supervised learning, Hidden Markov model, goal 

modeling, event log 

 
INTRODUCTION 
 

Process Mining has been a topic of interest that has attracted a growing number of 

publications for the past 10 years (Tiwari et al., 2008). The need of companies to better know 

their processes, model them, check their alignment with strategic goals, monitor their 

evolutions has generated a wealth of applications, from business process monitoring to 

reverse engineering and software process modeling, which in their turn raise new research 

issues. 

 

Most of the existing process mining approaches deal with process specified with notations 

that belong either the activity-driven or to the product-oriented paradigm such as BPMN, 

EPC, Petri Nets, etc. (van der Aalst, 2011 ; van der Aalst & Weijters, 2004 ; Pérez-Castillo et 

al., 2011). Although extremely interesting to deal with a number of issues, process models 

specified with these notations are difficult to exploit when it comes to tracing their rational 

and measuring. More importantly, process models specified in this way lack of flexibility 

(Nurcan, 2008) making difficult their alignment with strategic goals, measuring their degree 

of variability, or even trying to monitor their underlying strategies. This paper builds upon a 

thread of research works on intentional process modeling (Yu & Mylopoulos, 1994) (Nurcan 



et al., 2005) (Yu, 1995), i.e. were process models are specified notations that belong to the 

intentional paradigm, in other word goal-oriented process models. 

 

Intentions are a first class concept of Information System (IS) engineering (Rolland & 

Salinesi 2005). In the early 80s, Intentional models were proposed in the IS community 

(Swanson, 1982) (Christie, 1981) as a “potential theoretical foundation” to determine users’ 

behavior (Davis et al., 1989). Intention modeling takes root in a former work (Ajzen & 

Fishbein, 1975) that introduced the Theory of Reasoned Action (TRA) designed to model 

human’s behavioral intention. The TRA has proven effective in predicting and explaining 

human behavior through various domains as consumer behavior…Later on in the early 90s, 

intention analysis and modeling have been promoted as a driving paradigm to study strategic 

alignment, to define actors and roles, to specify the outcome of business process models and 

name them, to guide requirements elicitation, analysis, traceability, to study users behavior to 

identify and name use cases, etc. If intentions are referred to as goals, then intentional process 

modeling refers to modeling the goals underlying the studied processes (Kaabi & Souveyet, 

2007). Notations used in intentional process modelling, and therefore intentional process 

mining are thus goal modelling notations (Nurcan et al., 2005) (Yu, 1995). 

 

Several methods were recently proposed to mine intentions from observed behaviors. The key 

idea is to extract sequences of activities from records to evaluate and predict the users’ 

intentions that resulted in those activities (Khodabandelou et al., 2013). In these works, 

intentions are considered as “goals to be achieved by performing processes” (Bonito et al., 

2009). As a result, mining intention from process traces or logs can be considered an inverse 

problem, i.e. drawing intentions backward from process performance. 

 

The mainstream research on intention mining lies in the domain of information retrieval 

(Jathava et al., 2011), (Baeza Yates et al., 2006) (González-Caro & Baeza-Yates, 2011), 

(Hashemi et al., 2008), (Sadikov et al., 2010), (Strohmaier & Kröll, 2012), (Zheng et al., 

2002). Other applications have also been published, e.g. contents analysis (Mei et al., 2005), 

or business process models improvement (Outmazgin & Soffer, 2013). The common 

characteristic of the aforementioned methods is that they almost systematically generate 

individual intentions. This is interesting, but in the context of IS Engineering, intentions must 

be modeled, and dependencies between them and other concepts such as resources, tasks, 

strategy, systems functions, etc. be specified. The main contribution of this paper is a mining 

method that produces intentional process models, i.e. conceptual models of the intentions 

behind processes. 

 

We believe new applications will be found in the near future. Intentional process mining 

might help improving guidance, provide better recommendations, facilitate process modeling 

and process model quality assessment, identify the gap between prescribed business 

requirements and goals, help CEOs assess and monitor strategic goal implementation, etc. 

 

In the context of Information Systems (IS) engineering, intentional process mining can be 

useful at different stages of the process model lifecycle, for instance (i) at the requirements 

level, to elicit actual users' goals rather than inferred ones, (ii) at the project management 

level, to check the alignment between a prescribed objectives and the actual processes model 

or (iii) at the application level, to supervise users activities and provide them with more useful 

recommendations at runtime. 

 



This paper presents the Supervised Map Miner Method, an intentional process mining method 

that uses supervised learning and Hidden Markov Models to generate intentional models 

specified with the Map formalism (Rolland et al., 1999). Besides relating process intentions to 

each other, Map process models address the optative nature of intentions (Jackson, 1995) by 

specifying the variable strategies that are used to achieve them through the variety of 

processes enactments. The main contribution of this paper is that the mined intention process 

models make explicit and formalize the intentions that underlie the mined process traces. 

Rather than just indicating the category of intentions, or worse, simply state that there is an 

intention, the Supervised Map Miner Method labels the mined intentions and strategies with a 

human-understandable name and organizes them in conceptual models specified with a formal 

syntax. With respect to our former works on intentional process mining, this paper presents 

two controlled experiments performed with two different intentional process models. 

 

The rest of the paper is structured as follows: section 2 introduces the domain of intention 

mining (to which our own approach compares better than more traditional process mining 

techniques), and provides an overview on the Supervised Map Miner Method. Section 3 

provides further details on the Supervised Map Miner Method. Section 4 reports the two 

experiments. Impact on theory and practices are discussed in section 5. 

 

 

THEORETICAL BACKGROUND AND RELATED WORKS 
 
A quick search in the literature reveals that (a) many intention mining techniques have already 

been proposed, and (b) this research area is extremely dynamic with new contributions 

continuously published. Rather than aiming at a systematic literature review, this section first 

introduces the area by describing three particular approaches that were selected because of 

their impact or originality: (Strohmaier & Kröll, 2012), (Baeza et al., 2006) and (Outmazgin 

& Soffer, 2013).  

 

Selected Works on Intention Mining 
 
Strohmaier & Kröll, 2012 
 

Strohmaier and Kröll’s method is one of the many approaches to acquire knowledge about 

human intentions (the word used here is “goal”) by investigating web engine query logs. The 

idea is that better understanding the rationale behind the actions of web engine users can be 

useful to deal with a range of issues such as recognizing users’ intentions, reasoning about 

them, or generating plans to help them achieve their intentions. A salient feature of this 

approach is that it differentiates between implicit and explicit intentions.  

Explicit intentions are specified or expressed by people. They can for instance be expressed 

in natural language, in a sentence predicate with an intention verb and complements, as (Prat, 

1997) describes it. In query engines, explicit intentions can appear in queries such as “I want 

to do X”, X being the intention that the web engine user wants to achieve. Even better, the 

query is sometimes simply the intention itself: “X” such as in “plan a menu for diner”. 

Implicit intentions underlie what is expressed by people or can be observed from them. 

Contrary to explicit intentions, implicit intentions are neither expressed or specified as such, 

nor indicated e.g. by selecting among a list of intentions that a system helps to achieve. They 

must therefore be labeled to become explicit, which is the purpose of Strohmaier and Kröll’s 

approach. 



The approach has 3 main stages. First, word-unigrams and part-of-speech analysis 

algorithms are used to detect the main intentional features of web search queries. Then, a 

classification is achieved, which can be done using different algorithms such as SVM or 

Naïve Bayes Classifier. Last, Levin’s verb classes (Levin, 1993) are used to identify the class 

of intention to which the web search queries correspond. The WEKA (Witten & Frank, 2005) 

and the Natural Language Toolkit (NLTK) tools are used to manipulate the web search 

queries and to determine intention classes. 

 

Baeza-Yates, Calderón-Benavides & González-Caro, 2006 
 

The purpose of Baeza-Yates’ et al., approach is to discover implicit intentions (called “query 

intents”) from web engine queries. According to Baeza-Yates’ et al, mining query intents is 

important for web engines; the idea is that query results can be of better quality when the 

intentions behind queries are better understood. Baeza-Yates’ et al., approach relies on a 

fundamental distinction between informational or non-informational intentions. 

Informational intentions aim at acquiring some kind of knowledge, information, data, etc. 

The purpose of non- informational intentions is to perform some kind of process, task, 

transaction, action, activity, etc. Of course informational and non-informational intentions are 

not disconnected: achieving some non-informational intention (such as cooking) may require 

to search for information (a recipe), and the other way round, achieving a higher 

informational intention (getting the list of ingredients) may involve some lower level non-

informational intention (converting weights from the imperial to the metric system). Things 

are not always clear-cut. An intention is called ambiguous when it is neither clearly 

informational nor non- informational. 

In Baeza-Yates’ et al., approach, query intents are mined from event logs of individual web 

engine users. The proposed method mixes supervised and unsupervised machine learning 

using a classification algorithm, together with predefined intention categories from the Open 

Directory Project. The method uses the SVM algorithm combined with Error-Correcting 

Output Coding (ECOC), and Probabilistic Latent Semantic Analysis (PLSA) to analyze users’ 

interests and classify them into categories. Its implementation relies on the PennAspect 

software (Schein et al., 2001) to retrieve intentions names. 

 

Outmazgin & Soffer, 2013 
 

First of all, Outmazgin and Soffer’s approach does not explicitly deal with intention but on 

the concept of “workarounds”. Workarounds are non-compliant behaviors. They can be 

observed when people deviate -in full knowledge- from the processes they are supposed to 

follow. The driving idea is that detecting and understanding workarounds make it possible to 

improve process models. 

Outmazgin and Soffer’s method exploits workaround patterns that are first created through 

qualitative studies performed in different organizations. Actual workarounds are detected 

using the Disco tool (van der Aalst, 2011) that generates models specified using the Business 

Process Model Notation (OMG, 2011). 

Besides the original use of process mining techniques, what is interesting here is to notice 

that the concept of workaround draws a clear link between process models and intentions. 

First, workaround patterns point out to implicit intentions. Second, the method relates these 

“actual” implicit intentions (from peoples’ behavior observations) with “theoretical” explicit 

intentions (from process models). In brief, the intentions mined in this method stay implicit: 

they are spotted but never named. Nevertheless, it is indeed on their analysis that the 

technique relies. 



 

SUPERVISED MAP MINER METHOD 
 

The Supervised Map Miner Method was designed to mine intentional models from traces of 

non-deterministic activities that follow a stochastic process. Two important assumptions are 

that (i) intentions are at multiple levels, higher-level intentions embed lower level ones, and 

(ii) the multi-level structure of users’ activities and intentions is a time-variant, i.e. the system 

output evolves over time and non-linear system, i.e., a system that has more than one 

dimension and the output is not directly proportional to the input. HMMs are particularly 

adapted to handle this kind of situation. 

A HMM can be considered as simpler Dynamic Bayesian Network (DBN) (Murphy, 2002), 

i.e. a Bayesian Network (BN) that models time series data and relates variables to each other 

over adjacent time steps. They are also called two-time slice BN because at any point in time 

 , the value of a variable can be calculated from the immediate prior value (time  -1). It is 

important to notice that DBN makes the fundamental assumption that events can cause other 

events in the future but not in the past. At first glance, this assumption fits rather well with 

intentions but it can be argued. However, whereas future intentions influence past ones is a 

philosophical concern outside the scope of this paper. 

 
Overview of the Supervised Map Miner Method 
 
Before introducing the Supervised Map Miner Method, it is important to precise its position 

regarding the literature, more particularly regarding the three approaches explained in section 

2.1. We compare the characteristics of the aforementioned approaches with respect to four 

essential aspects: the type of inputs, the analysis paradigm, the methods used and the type of 

outputs. 

- Whereas the inputs of these approaches are single queries, logs, or activities, the input of 

our approach is the temporal set of a user’s activities – the interactions of a user with a 

computer system during a time slice         , where    is the beginning of the activity 

performance and    is the end. During a time   one or several sequences of activities are 

recorded by a tool. These sequences are a trace of activities for the user. 
- Since the inputs the mentioned approaches are individual entities, their analysis does not 

take i to account the temporal dependencies between each input element. In our approach, we 

analyze the entire users’ traces t at occurred during a process enactment. Note that a process 

in the IS context is defined as a sequence of activities linked to each other by a common goal 

(Rozinat, 2010). Therefore, there are strong correlation and dependency between users’ 

activities and they cannot be considered as a single, independent and uncorrelated entity. A 

sequence of activities contains richer information about the users’ intention than a single 

activity, and this from both semantic and abstraction level points of view. Indeed, analyzing a 

sequence of activities allows determining the high-level intentions (e.g. organizational goal), 

while analyzing single activities leads to less informative, low-level intentions, also called 

basic intentions or action intentions, which are closer to activities than intentions. 

- These approaches use classification techniques to classify a single input into a class of 

intention. The choice of classification technique seems accurate since, as explained above, 

their concept of intention is different from our concept. The aim of our approach is to 

determine users’ strategies and intentions and formalize them by an adequate intentional 

process model. Thus, we set up a two-level topology which discovers the strategies first, and 

then the intentions. Note that this hierarchy corresponds to the human reasoning. Thus, we 

need to model the inputs with a mathematical model that supports this topology. 



- The outputs of these approaches are the low-level intentions, which mean inferred 

intentions are not part of the high-level intentions that a user wants to fulfill in a given 

process. Whereas in our approach the outputs are the high-level intentions of a process that 

can be discovered from a set of sequences of activities linked to each other by a common 

objective. 

Besides identifying intentions, the object of intention mining approaches may be to 

generate intentional models specified using a formal notation. Focusing on the IS engineering 

literature, we distinguish KAOS (Dardenne et al., 1993), i* (Yu, 1995) and Map.  

KAOS supports variability and have a well-structured semantic but it has a rigid task-

decomposition; modeling complex intentional processes is then difficult. i* has an operational 

semantic for the tasks but not for the goals and it is not used to model strategic goals. i* only 

allows modeling the business strategy with organizational strategic goals. i* is not designed to 

be a variable framework, therefore, it does not afford a high level of flexibility. Tropos 

(Bresciani et al., 2004) is an agent-oriented software engineering methodology that includes 

i*; GRL (Amyot et al., 2009) is an intentional modeling language based on a subset of i*. 

Thus, they both have the same limits as i*. 

We chose Map notation rather than other intentional process models notations because (a) 

its topology, i.e. combining intentions and strategies at different abstraction levels, allows to 

handle large-scale and complex processes (Rolland and Salinesi, 2005), (b) it supports process 

variability and flexibility by defining different strategies to fulfill a given intention (Rolland et 

al, 1999), and (c) it has proved to be effective to specify business processes, , engineering 

methods, software engineering processes, etc. (Rolland et al, 1999) (Rolland, 1993) (Rolland 

and Salinesi, 2005). A systematic review of these models is discussed in a previous paper 

(Khodabandelou et al., 2013). 

The Map formalism (Rolland et al, 1999) combines the concepts of “intention” and 

“strategy” in collections of models (called “Maps”) organized hierarchically with refinement 

links. Intentions are considered as goals to be achieved by performing a process. Strategies 

define different ways to achieve a given intention. A map (an instance of Map metamodel) 

specifies the multiple ways of enacting a process to fulfill a given intention with a given 

strategy. A map is presented as a directed graph where nodes are “intentions” and edges are 

“strategies” (see Figure 3 section 4.1). A strategy connecting to intentions is called a 

“section”, which is formally defined by the triplet < Source Intention, Target Intention, 

Strategy >. The sections of a map can be executed as long as intentions are not completely 

fulfilled. In order to realize the strategies, one has to perform some activities which are 

recorded as the users’ traces. Specifying different strategies for every intention emphasizes 

the optative nature of intentions: there are often many ways to achieve intentions.  

To the best of our knowledge, two mathematical models are used in intention mining 

methods: the Bayesian model (Strohmaier & Kröll, 2012) and the Hidden Markov model 

(Sadikov et al., 2010). Bayesian networks are graphical models that represent random 

variables and their conditional probabilities via a directed acyclic graph. Hidden Markov 

Models (HMM) are a variant of stochastic Markov chain that represent hidden sequences of 

states, which are interpreted as intentions in the context of intention mining. HMM generalize 

finite-state automata by evaluating both the probability of transitions between states and 

probability distributions of observations in those states. The Supervised Map Miner Method 

uses HMM to represent the probabilities of sequencing intentions and strategies while 

enacting a process, that is, to model the relation between sequences of strategies and 

sequences of activities. 

Supervised learning is a machine learning technique that consists in inferring a function 

from labeled training data (Mohri et al., 2012). In supervised learning, each example is a pair 

consisting of an input object (typically a vector) and a desired output value (also called the 



supervisory signal). Unsupervised learning operates on unlabeled data - input where the 

desired output is unknown. In the context of intention mining, this can be achieved through 

cluster analysis. The problem of unsupervised learning is that since the examples given to the 

learner are unlabeled and there is no error or reward signal, the intention names inferred are 

hardly validated. For the Learning phase, the Supervised Map Miner Method uses the Viterbi 

Algorithm (VA) (Forney, 1973). 

Figure 1 provides an overview of the Supervised Map Miner Method which is a method of 

intention mining. As the figure shows, the method consists of several stages: (i) using 

recorded traces of activities obtained from practical uses of the prescribed map labeled by 

related strategies as training data, (ii) estimating the parameters of the HMM, i.e. emission 

and transition matrices, based on the recorded traces, (iii) predicting strategies and intentions 

for a new trace of activities using VA; last (vi) based on estimated strategies and intentions 

and on the emission and transition matrices, the Supervised Map Miner Method generates 

intentional model formalized with the Map metamodel (on the right hand side of the figure). 

The first two stages are part of the learning phase and the two last stages composed the 

discovery phase of the method. 

The obtained map can be compared with the prescribed map to check the conformance 

between the models. This can be helpful for: (a) verifying if stakeholders followed the 

prescribed map or not (b) when and why they deviated from the prescribed map (c) analyzing 

stakeholders’ behaviors during process enactment, (d) enhancing the prescribed map model 

regarding the results of stakeholders’ behavioral analysis, (e) guiding stakeholders in each 

step of process enactment at runtime (this point is one of the perspectives of our work). 

The intentions specified as output in map process models are fully explicit. They aim at 

providing a view on intentions. Indeed, research on guidance in method engineering shows 

that many method engineering issues, such as rigidity or lack of adaptation, are solved more 

effectively when intentions and strategies are explicitly specified (Rolland et al., 2005).  

The Supervised Map Miner Method was initially developed for conformance analysis in the 

method engineering domain (as shown later in this paper). Note that intention mining can be 

applied for one user or many users to represent the point of view of one user or a group of 

users. 

 

 
Figure 1. The overview of the Supervised Map Miner Method. 

 

The Supervised Map Miner Method is supervised and semi-automatic. Its inputs are traces, 

as opposed to event logs used in the aforementioned approaches. A trace consists of several 

events such that each event relates to the enactment of an activity. Performing one or several 

activities relates to the enactment of a strategy and consequently the fulfillment of an 

intention. Last, although the Supervised Map Miner Method automatically discovers the 

topology of the map process models, i.e. the strategies, it does not still exploit taxonomy or 

ontology.  



 
Adapting HMM to intention mining 
 

Here we give a brief introduction to HMMs framework. A complete overview of HMMs can 

be found in (Rabiner, 1989). HMMs consist of two correlated Markov processes. One process 

is for the hidden state of the HMM and the second process is for the observation. An HMM is 

formally defined by a tuple:                 where   is the set of possible hidden states, 

A is the set of possible observations,   is the hidden states transition matrix, (i.e. the matrix 

that represents the probabilities of transition from one hidden state to another),   is the 

observations emission matrix (i.e. the matrix which contains the probabilities of observations 

for every hidden states), and   is the vector of initial probabilities of the hidden states (i.e. the 

hidden states probabilities at the beginning of the process). 

Figure 2 depicts an example of HMM that contains three possible hidden states 

           and three possible observations           . For instance  (     ) represents the 

transition probability from hidden state    to    and   (  ) represents the emission 

probability of observation    in hidden state   . From an initial hidden state given by  , an 

observation is generated according to  , then and for each step of the process a new hidden 

state is generated according to   and a new observation is generated according to  .  

 

 
Figure 2. Example of a first order HMM structure with three hidden states. 

 

In our previous work (Khodabandelou, 2013), we proposed to model the hidden states of 

HMMs as the users’ intentions and the observed process as the users’ activities. Nevertheless, 

we realized that this model was not accurate enough to represent precisely a map process 

model, i.e. instance of the Map metamodel. Indeed, activities are generated by strategies and 

not directly by intentions. For this reason we propose, in this framework, to model the hidden 

states as strategies and the observations as users’ activities. Note that this model allows 

inferring intentions since when a sequence of strategies is known; related intentions can also 

be inferred. 

Using HMMs raises several questions: (a) how to estimate the parameters of the HMMs? 

(b) What is the probability of a given sequence of activities? (c) What are the most probable 

strategies associated to a given sequence of activities? The first and the third questions are 

addressed in the following section. 

 

Map mining process 
 

Once the two Markov processes are defined, the parameters of the HMM must be estimated. 

This is the learning phase of the Supervised Map Miner Method. It consists in training the 

algorithm with sequences of activities and related sequences of strategies to find the 



parameters of the HMM. A second phase is the discovery phase, in which strategies 

associated to any sequence of activities can be evaluated. 

Learning phase: the estimation of the HMM parameters consists in finding the transition 

probability between strategies (matrix T) and the probability distribution of activities for each 

strategy (matrix E). If a sequence of activities      is in the model and the corresponding 

strategies are known, the probability estimates are computed using the Maximum-Likelihood 

Estimation (Gales, 1998). This method estimates the parameters  (   ) and   ( ) such that 

they analytically maximize the likelihood of co-occurrence of the strategy      and of the 

sequence of activities     . It consists in counting the number of transitions from one strategy 

to another and the number of occurrences of each activity in each strategy. This learning 

phase is necessary to evaluate the most likely strategy associated to a given activities 

sequence. 

Discovery phase: Once the parameters of the HMM are estimated, we have to identify the 

strategy the most associated to a given sequence of activities. To do so, the VA is commonly 

used in the context of HMM; this algorithm radically reduces the complexity of the search for 

the most likely hidden sequence of strategies. Thereby, the exponential complexity of a brute 

force search becomes linear. 

 

EVALUATION 
 

In order to evaluate the precision and recall of the Supervised Map Miner Method, we 

conducted two controlled experiments with Master students majoring in computer science.  

 

First Controlled Experiment: the E/R case 
 

In the first experiment, a map specifying intentions and strategies for Entity/Relationship 

modeling was given to the students as guidance. In order to get traces, we developed a web-

based tool that records which sections of the map were followed by the students while 

creating an Entity-Relationship diagram. The traces from 66 students were collected during 

the experiment. Table 1 presents the profile of the students. All of them had learned and 

practiced ER modeling since more than one year before the experiment. 

 

Table 1. Profile of the students 

 
 

The intentional model used to guide the students was adapted from (Assar, 2000). The 

model, presented in Figure 3 shows that students were allowed to act with three intentions in 

mind: Specify an entity, Specify an association and Stop. According to this model, students 

can select ten strategies to fulfill the three intentions. Each edge represents a strategy that a 

student can select to fulfill an intention (specified as a node) according to his/her situation. 

For instance, if the current situation is Start and the students’ intention is to Specify an entity, 

there is only one strategy (by completeness of the model) to fulfill this intention. When the 

current situation is Specify an entity, there are four strategies (by completeness, by 

generalization, by specialization, by normalization) to fulfill the same intention. It is possible 

to continue enacting the process by selecting the strategies that lead to the considered 

intentions but once the Stop intention is achieved, the enactment of the process is finished. 

 



 
Figure 3. The prescribed intentional model. 

 
To fulfil the recommended intentions following the proposed strategy, students could carry 

out fifteen different modelling activities named in Table 2. The links between each section of 

the Map and the relating activities are detailed in Table 3. 

 

Table 2. Observed activities. 

 
 

Table 3. Strategies and related activities. 

 
 



Note in Table 3 that several activities relate to several strategies. This is for instance the 

case of ‘delete attribute’ activity that relate to both intentions ‘Specify an entity’ and ‘Specify 

an association’ when they are performed ‘by normalization’ (strategies    and    ). Indeed, a 

given activity can be performed in the context of different strategies to achieve different 

intentions. 

The web-based tool traced information about the activities that were executed, the 

strategies that were selected, a timestamp, and the unique identifier of the students. The model 

used to store the traces is presented in (Hug et al., 2012). 

 
Strategies discovery 
 
The traces were thus used to estimate the HMM parameters. As explained earlier, this consists 

in estimating the coefficients of the matrices   and S  Since the prescribed intentional model 

comprises 10 strategies and 15 activities, the size of   is       and the size of   is      . 

The coefficients of the transition matrix   were obtained by counting the number of 

transitions from one strategy to another and the coefficients of matrix A, by counting the 

number of times each activity appeared for each strategy. 

The quality of the estimated coefficients depends on the length of the sequences used to 

calculate the estimates. If the length of the sequences is too short, the sequences will not 

capture all the typical students' behaviors and the estimated coefficients will be of poor 

quality. 

This phenomenon can be observed on the dataset of the experiment. First, the matrices  ̂ 

and  ̂ were estimated with the full length of the sequence. Then, for seven different lengths of 

sequences (10, 20, 30, 40, 50, 60 and 66), matrices  ̂ and  ̂ were again estimated. Six pairs of 

matrices of different quality were thus obtained. The quality of estimations is shown in Figure 

4. For each sequence length, the figure reports the mean of the absolute values between the 

coefficients differences for the estimated matrices  ̂ and  ̂ with regard to the coefficients of 

the matrices estimated with the full sequences of length 66 – let’s call them  ̂-Best and  ̂–

Best. More precisely, this is the mean of the absolute values of the coefficients differences of 

these matrices. The figure shows that the coefficients converge as the number of traces for 

training increases. In other words, the error of estimation of coefficients decreases with the 

length of the training sequences. The use of the  ̂-Best and  ̂–Best sequences should 

therefore be used as the emission and transition matrices. 

 

 
Figure 4. Error of parameters estimation depending on sequence length. 

 



Intentional model discovery 
 

Figure 5 illustrates the intentional model obtained using the best estimated parameter of 

HMM (the transition matrix) obtained previously. This model shows all the transitions 

between the intentions in the Map through the sub-intentions defined by SI-1 to SI-8. This 

intentional model is obtained using the threshold adjusted to  =0.06. This threshold allows 

adjusting the complexity of a map process model. When   is close to 0, almost all the 

transitions from the supervised model are present in the obtained map. Consequently, the 

likelihood of the obtained map is high but the obtained map is more complex since it has a lot 

of sections. However when   increases the number of sections, as well as the likelihood of the 

obtained map, decrease. The map in this case is less complex but it is not accurate enough. 

We conclude from this study that the value of   has to be set to obtain a compromise between 

the accuracy of the map and its understanding complexity. 

 

 
Figure 5. Map obtained using HMM based supervised learning with a threshold  =0.06. 

 

This complex map can be simplified by identifying the prescribed intentions, i.e. Specify an 

entity and Specify an association through regrouping manually the sub-intentions into higher 

level ones. Since our assumption is that the students have respected the prescribed map, then 

we know to which intentions the strategies found in the obtained map correspond. 

For instance, regarding the prescribed map, the strategies 1, 2, 3 and 5 should be associated 

with the Specify an entity intention. Strategy 7 should be defined between these two 

intentions. Figure 6 shows the final map thereby obtained. 

 



 
Figure 6. High-level abstraction of the obtained map. 

 

Figure 6 highlights the matches and mismatches between the obtained map and the 

prescribed one. It means that sometimes the students achieved their intentions respecting the 

prescribed map and sometimes they deviated from it. 

- The first ascertainment concerns the matches between the prescribed and obtained maps. 

The students chose strategy    to achieve the intention Specify an entity and they continued to 

try to reach this intention by choosing strategies   ,    and   . To fulfill the intention Specify 

an association, they chose strategy  and finally strategy     to Stop the process.  

- The second ascertainment concerns the mismatches between the prescribed and obtained 

maps. The students never enacted some prescribed strategies. Dashed arrows in Figure 6 show 

these strategies. For instance, we observe that they never chose strategies     By 

generalization,     By reference,     By normalization. 

- Some strategies shown in Figure 5 raise some issues. The section <Specify an association, 

Specify an entity, By completeness of the association> (    in Figure 5) is not coherent as the 

target intention completely differs from what is implied by the strategy. We then chose not to 

represent it in Figure 6. The section < Specify an association, Specify an entity, By 

completeness of the model> was kept in Figure 6 (   ) as users can complete the model by 

creating a new entity after specifying an association. In this case, the situation takes into 

account the modified product (the ER diagram), on the contrary of the section < Start, Specify 

an entity, By completeness of the model> which implies no existing product to take into 

account. However, we are not able to tell from the traces if the users properly followed these 

strategies according to the product situation (existing ER diagram or not). With the same 

reasoning, we kept the section < Specify an association, Specify an entity, By completeness of 

the entity> in Figure 6 (   ) allowing users to add attributes to an entity of their diagram after 

specifying an association. 

 
Results Analysis 
 
We calculate the recall, precision and F-score of the Supervised Map Miner method. Five 

strategies had a 100% score which mean they could systematically be correctly retrieved from 



observations of students’ activities. The discussion below focuses on the remaining 5 

strategies.  

The first observation is that recall and precision are stabilized when the estimation 

sequence length reaches its maximum value. It means that for a length of 66, the VA provides 

stable results. 

Table 4 shows recall, precision and F-score for 5 strategies mined from the 66 traces. For 

example, the algorithm finds 99% of activities related to strategy   . This means that almost 

all the activities associated to strategy    were identified. Now the question is: does the 

algorithm associate several activities to the strategies while, in fact, they belong to other 

strategies? This question could be addressed using the precision ratio. For example, the 

precision result stabilizes at 99% for strategy   , which means only 1% of the activities are 

associated to strategy    while they should not. 

 

Table 4. Recall, precision and F-score for 5 strategies. 

 
 

The same measures were taken for all the strategies and reported in Figure 7, which shows 

the global performance of traces estimation. In this experiment, the curve of recall starts from 

0.9114 and its value increases until reaching the maximum value at 0.9240. The curves of 

precision and F-score start from 0.9120 and 0.8869 and stop at 0.9194 and 0.9207, 

respectively. We deduce from these results that the accuracy of retrieval for the ten strategies 

is 0.9207, which indicates that the method has found the right strategies corresponding to the 

traces of activities with a reliability of 92%. 

 

 
Figure 7. Mean values for recall, precision and F-score for the obtained map. 

 

Second Controlled Experiment: The gift case 
 
The application fields of intentional models are extremely variable. For this case study, we 

guided students through a prescribed intentional model to buy a present for their best friend. 

Figure 8 presents this model. 



One the reason motivating to conduct the second controlled experiment is to better 

understand why the students deviated from the first prescribed map. To verify this 

phenomenon, the second prescribed map offers more strategies to fulfill the intentions than 

the first one. This makes the prescribed map more flexible and permits the students to pursue 

their objective more easily. 

 

Context 
 
The prescribed map is composed of three intentions Find an idea for a present, Find a place 

to buy the present and Stop, 15 strategies, 29 sections and 22 activities (see Table 5). 

 

 
Figure 8. The prescribed intentional model to guide users to buy a present. 

 

Table 5. The observed activities. 

 
 

Table 6 presents the strategies and the related activities. Several strategies are grouped in a 

guideline to ease the reading and understanding of the prescribed map. For instance, the 

strategy ‘by internet’ can be performed ‘by Google search’, ’by website search’ or ‘by visiting 

a forum’. 

 



Table 6. Strategies and related activities. 

 
 

Strategies discovery 
 
We recorded 90 traces of activities produced by 90 students for which we know the sequence 

of selected strategies. As mentioned earlier, the knowledge of the strategies allows us working 

with the framework of Supervised Map Miner Method to estimate the parameters of the 

HMM, i.e. the coefficients of the matrices   and    Since the intentional model comprises 15 

strategies and 22 activities, the size of   is       and the size of   is      . 

The emission matrix  , shown in Table 7, provides some information on the students’ 

behavior analysis when buying a present. 

- One ascertainment is that   : open a browser,   : type a query and   : navigate on the 

website activities are performed for the strategies    ,   ,     and     equally with 

probabilities of 23%, 9 % and 15%, respectively (second, third and seventh row in table 7). 

This is not a surprising behavior since the chosen strategies are: by internet, consequently, the 

students first opened the browser, typed the query and then navigated on the website. 

- The    activity: create idea concept appears with a high probability of 43% (fifth row, 

third column). This observation is interesting because it shows the students tend to ask 

directly the friend for whom they would like buy the present. 

 



Table 7. The emission matrix of obtained intentional model. 

 
 

- The apparition of    : modify an idea concept with a high probability of 23%, 43% and 

100% for strategies    ,     and    , respectively, indicates the percentages of the students 

who asked directly their friends and then changed their present idea. In the same way, the 

students who have asked directly their friend modified the place to buy a present. 

- The activity    : give up has never been performed and consequently strategy      has 

never been chosen by the students. This observation means all students have successfully 

finished their shopping using prescribed Map guidance. 

 

Intentional model discovery 
 
Figure 9 illustrates the obtained intentional model using the best estimated parameter of 

HMM, i.e. the transition matrix, obtained in the previous step. This intentional model shows 

all the transitions between the strategies and the intentions. This map is obtained with a 

threshold adjusted to  =0.1. The three intentions Find an idea to buy a present, Find a place 

to buy the present are identified by the potatoes and Stop by the oval. 

 



 
Figure 9. The obtained intentional model using the Supervised Map Miner Method with a 

threshold adjusted to   =0.1. 

 

Figure 10 shows the high-level of abstraction of the obtained intentional model. This map 

provides some information about the students’ behaviors: 

- We observe that the prescribed map has been accurately followed by the students most of 

the time. Indeed, the transitions between the strategies we obtain with the Supervised Map 

Miner Method are mostly consistent with the prescribed map.  

- However, we observe some deviations from the prescribed map. For instance, all the 

sections comprising strategies    and S8 were not chosen by students, i.e. by visiting a web 

forum and by calling a friend, respectively. We then only let S7a as by Google search and S7b 

as by website search, and S8 as by sending a SMS in Figure 10. 

- The students never selected the strategy ‘by failure’ to quit (strategy    ) between the 

intentions Find a place to buy the present and Stop. This behavior means all students who 

have succeeded to find a place to buy the present, bought it either by internet shopping or by 

physical shopping. 

- The students chose strategy    by Google search and by website search more than 

strategies    and    to reach the intention Find a place to buy the present. This observation 

means they prefer to search for a place to buy a present on the internet rather than using 

personal contact or personal knowledge. 

 



 
Figure 10. The high-level of abstraction for obtained map. 

 

In this second controlled experiment, we verified our hypothesis, i.e. the impact of having 

more strategies in the prescribed map avoid deviations, and the deviations are less frequent 

than in the first experiment. 

 

Results analysis 
 

We calculate the recall, precision and F-score for the fifteen strategies. We only show the 

results of three strategies   ,    and     for which these measures are not near to 100%. 

Figure 11 depicts these measures averaged over 90 test sequences for the strategies   ,    and 

   . 

 

 
Figure 11. The results of Recall, Precision and F-score for strategies 1, 8 and 12. 

 



The recall curve for strategy    is stabilized around 89% which means the VA finds 89% of 

activities related to the strategy   . In other words, a huge part of activities associated to 

strategy    are identified with the VA. It means that for a length of 66, the VA provides stable 

results. The results of recall are presented for the three selected strategies in Table 8. It 

indicates the recall measure for strategy    is of 41% which is not satisfying. The weak result 

of recall can be due to the fact that the estimation sequence is not long enough to detect all the 

behaviors and the VA needs more training samples to learn.  

 

Table 8. Recall, precision and F-score for 3strategies. 

 
 

The precision result stabilizes at 50% for strategy 1 which means 50% of the activities are 

associated to strategy    while they belong to other strategies. The precision give better result 

for strategy 8 and 12. 

Finally, the results of F-score express the reliability of the VA to detect the related 

strategies sequence to any activities sequence. For example, if the strategy     is chosen by a 

given student, the VA is able to find this strategy with an accuracy of 0.75%. 

The mean values of recall, precision and F-score over all strategies which express the 

global performance of traces estimation are illustrated in Figure 12 The recall curve starts 

from 0.42 and its value increases until reaching the maximum value at 0.60. The curve of 

precision starts from 0.40 and stops at 0.71. This means the accuracy of retrieval for fifteen 

strategies is 0.6 which is more than satisfying. 

 

 
Figure 12. The results of mean values for recall, precision and F-score over all the strategies. 

 

Threats to Validity 
 
There are several threats to validity that may have impacted our work. One threat is related to 

the supervised learning assumption, i.e. the prescribed map is actually followed by students. 

This assumption is necessary to proceed with the discovery phase to allow VA assigning 

related strategies to the new activities sequence. However, during the enactment of the 



process, students might have deliberately or by accident not followed the intentional model; 

they could also have poorly recorded their traces as shown in the sections 4.1.c and 4.2.c. 

Consequently, assuming that the prescribed model is followed by the students, this creates a 

bias in the definition of strategies and intentions. 

Another threat is the absence of ground truth for labeling the activities sequences. 

Consequently, the labeling could be affected as it is a subjective process. Further, assigning 

the labels to the strategies and intentions constrains the discovered map to a limited space 

which leads to poor performance of supervised learning. In addition, supervised learning is a 

time-consuming and intensive labor due to human’s effort required to label the data. The cost 

of labeling the data for supervised learning is quite high as it involves the users’ commitment 

to label and comment their activities at each step of the process enactment. 
 

CONCLUSION 
 

Intention mining is a promising field of research with multiple applications both inside and 

outside the context of IS Engineering. 

This paper makes two contributions: (a) an original intention mining method, called 

Supervised Map Miner Method, that generates intentional models formalized with the Map 

metamodel from traces of activities, and (b) a validation performed based on two controlled 

experiments; the validation evaluates the precision, recall and F-score of the results obtained 

with the Supervised Map Miner Method. 

The Supervised Map Miner Method can be distinguished from the other approaches of 

intention mining field by several novelties: (a) the inputs in our approach are set of traces of 

activities related to users and no single entity as queries, logs, etc. (b) contrary to the other 

approaches, our method analyzes processes enacted by users to obtain a common goal, (c) the 

multi-level topology of activities, strategies and intentions requires a mathematical model, 

whereas in the other approaches, using classification techniques is enough to classify a single 

input into a class of intention, (d) our method offers the high-level intentions as the outputs of 

process model, contrary to the other approaches that discover only the low-level intentions. 

This difference is fed by the fact that we assume there are strong correlation and dependency 

between users’ activities and they are not a single, independent and uncorrelated entity. 

In practice, the Supervised Map Miner Method could be used whenever intentions are 

known and can be modeled in advance. This is for instance the case in the Enterprise 

Architecture context where not only business process are supposed to be implemented by their 

organizations, but also strategic objectives, missions, business goals are well-known and can 

be modeled (Thévenet & Salinesi, 2007). In this situation, the Supervised Map Miner Method 

could be used to monitor alignment with best practice strategies (for audit), target strategies 

(to monitor change), or to facilitate strategic emergence. In the method engineering context, 

the Supervised Map Miner Method can be used to understand which methods are actually 

used and how (Janković et al., 2013), and to inform recommendation techniques for people 

who need guidance (Epure, 2013) (Epure et al., 2014). There is little doubt many other 

applications will be found in the future. 

Three key questions shape our future works. The first two ones are, what if intentions are 

not known and modeled in advance, and, how to mine to other intentional formalisms than 

Map? Both issues are hard: unsupervised learning is an obvious answer to the first one. This 

approach is promising as it generally shows better results than supervised learning. However, 

the problem is that we would like to keep making mined intentions explicit. This implies that 

a new element, such as ontology, should be introduced in the method to generate the names of 

the intentions. Our approach should support different formalisms to provide models that really 

match the users knowledge and organizations and projects culture, as I* and KAOS that are 



widely used by the communities for goal modelling. We could try to abstract the intentions 

and strategies from the specificities of map models and generalize them to become useful for 

any kind of goal modeling approach. A complex framework like i* will be difficult to handle 

unless a solution is found to match all kinds of dependencies with observations. Our last issue 

is more difficult to handle: would it be possible to differentiate between intentional and non-

intentional activities? A first step would be to undertake experiments where traces include 

activities that are not all instance of processes, but also random, non-rationale, or mechanistic. 
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