
HAL Id: hal-01162783
https://paris1.hal.science/hal-01162783

Submitted on 11 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Refinement Strategies for Correlating Context and User
Behavior in Pervasive Information Systems

Ali Jaffal, Bénédicte Le Grand, Manuele Kirsch-Pinheiro

To cite this version:
Ali Jaffal, Bénédicte Le Grand, Manuele Kirsch-Pinheiro. Refinement Strategies for Correlating Con-
text and User Behavior in Pervasive Information Systems. International Workshop on Big Data and
Data Mining Challenges on IoT and Pervasive Systems (BigD2M 2015), Jun 2015, London, United
Kingdom. �10.1016/j.procs.2015.05.103�. �hal-01162783�

https://paris1.hal.science/hal-01162783
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


 Procedia Computer Science   52  ( 2015 )  1040 – 1046 

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs
doi: 10.1016/j.procs.2015.05.103 

ScienceDirect
Available online at www.sciencedirect.com

International Workshop on Big Data and Data Mining Challenges on IoT and Pervasive Systems 
(BigD2M 2015)  

Refinement Strategies for Correlating Context and User Behavior in 
Pervasive Information Systems 

Ali Jaffal*, Bénédicte Le Grand, Manuele Kirsch-Pinheiro 
Centre de Recherche en Informatique / Université Paris 1 – Panthéon Sorbonne, 90 Rue Tolbiac, Paris 75013, France  

Abstract 

Large amounts of traces can be collected by Pervasive Information Systems, reflecting user’s actions and the context in which 
these actions have been performed (location, date, time, network connection, etc.). This article proposes refinement strategies 
with different frequency measurements on contextual elements in order to better analyze the impact of these elements on the 
user’s behavior. These strategies are based on data mining and Formal Concept Analysis and used to refine input data in order to 
identify the context elements that have a strong impact on user behaviors. We go further on context analysis by cognizing FCA 
with semantic distance measures calculated based on a context ontology. The proposed context analysis is further on evaluated in 
experiments with real data. The novelties of this work lies on these refinement strategies which can lead to a better understanding 
of context impact. Such understanding represents an important step towards personalization and recommendation features. 
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1. Introduction 

Pervasive Information Systems (PIS) constitute an emerging class of Information Systems, in which information 
technology is gradually embedded in the physical environment1. Huge volumes of data can be generated from these 
systems by observing user interactions and the environment in which they take place. Such data is extremely 
valuable for systems designers and service providers, who can enhance their systems and services according to 
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user’s context (e.g., location, date, time, past and current activities). Context can be defined as any information that 
can be used to characterize the situation of an entity (a person, place, or object) that is considered relevant to the 
interaction between a user and an application2. In this article, we propose to investigate the relative impact of 
various context elements on the user’s activities. Context elements may have an influence on the user’s choices. By 
understanding this influence, it is possible to propose better personalization and recommendation features and to 
improve adaptation mechanisms. However, identifying relevant context elements (for a given user) from the highly 
heterogeneous collected context data is a challenge not only because of data heterogeneity, but also because this 
relevance is personal and may vary significantly from user to user. Context analysis methods are then necessary in 
order to establish context relevance for a given user. In earlier work3, we have used Formal Concept Analysis (FCA) 
to this end and shown its interest to cluster context elements with regard to associated user activities (and vice versa) 
into overlapping classes. However, FCA’s strength becomes a weakness in the context of Big Data: all input data are 
considered as equally important, and the interpretation of results is complex. The contribution of this paper consists 
in proposing a methodology to reflect in FCA results the relative importance of context elements on user activities, 
with regard to their frequencies. We propose and compare two frequency measures on context elements, which we 
use to refine the data given as input to FCA algorithms. We propose two refinement strategies for each frequency 
measure, and we experiment them on real data collected from tablet users. 

The paper is structured as follows: Section 2 presents related works and introduces FCA. Section 3 introduces the 
proposed methodology, while Section 4 presents its evaluation. Section 5 concludes the paper.       

2. Related works  

Context-awareness can be defined as the ability a system has to adapt its operations to the current context4. It 
represents an important requirement for Pervasive Information Systems (PIS) that must adapt their behavior in order 
to offer user relevant services and information. According to Greenberg5, several factors contribute to the context 
and its relevance highly depends on the particular situation. Analyzing the impact of context information on the 
user’s actions becomes a key aspect for successful PIS.  

Data mining is sought to satisfy the growing demand for intelligence on pervasive environments. It is promoted 
as the research for relevant information that supports decision and prediction6,7. Several works such as 8 are 
considering data mining techniques for analyzing context data. These techniques can play an important role in 
understanding and discovering the intrinsic relationships between data. Among them, Formal Concept Analysis 
(FCA)9,10 represents an interesting method of conceptual clustering. It provides an approach to knowledge 
organization. It helps finding a natural data structure, while associating actions to observed context elements. 

The input of the FCA algorithms is a binary relation - called formal context - between a set of objects and a set of 
attributes that describes these objects. Table 1 shows a formal context in which objects are the applications executed 
by a user on a tablet, and attributes describe the context in which these applications have been used (details about 
the dataset used in this article are given in Section 3). For example, Youtube has been used at home, but also on a 3G 
network and in the morning. Note that the only possible values in the formal context are 0 and 1, which does not 
reflect the relative usage of the various applications (indicated in parentheses): SMS are associated to university and 
restaurant in a similar way in the formal context, although the number of SMS sent in each location is very different. 

Table 1. Example Formal Context (the values in parentheses correspond to the number of times the application was used in each context).  

Applications University Restaurant Parents’ 
home 

Home Transportation 3G Morning Coffee 
break 

Lunch 
break 

Afternoon  Evening 

Gmail 1 (2) 0 0 0 1 1 (2) 1 0 0 1 0 

SMS 1 (80) 1 1 (5) 1 (30) 50 1 (170) 1 (40) 1 (20) 1 (40) 1 (60) 1 (10) 

Telephone 0 0 0 1 (3) 1 (2) 1 (5) 1 0 0 1 (2) 1 

VDM 0 0 0 1 (4) 1 (2) 1 (5) 1 (4) 0 0 0 1 (2) 

Flappy Bird 1 0 0 1 1 1 1 1 0 1 1 

Youtube 0 0 0 1 0 1 1 0 0 0 0 
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Figure 1 represents the Galois lattice generated from the formal context of Table 1. Each concept (cluster) of the 
lattice groups objects that have attributes in common. For example, this lattice shows that Flappy Bird, SMS and 
telephone applications have been used in the afternoon, in the evening, during transport and at home. These context 
elements are common to these applications. Note that the concepts become more and more specific when going from 
the top to the bottom of the lattice, from concepts with many applications sharing few context elements to concepts 
with few applications sharing many context elements. The lattice provides a clustering of applications according to 
the context elements they have been associated to. Conversely, context elements are described with regard to the 
applications associated to them. 

One limit of the current approach is that the relative frequency of applications in each context is not reflected in 
the formal context of Table 1, as the only possible values in this table are 0 and 1. The goal of our work is to take 
this relative frequency into account in the formal context.  

Besides, data collected in a real environment is often complex and heterogeneous. Context information can be 
represented in very different ways, using symbolic values, real number, intervals, etc. In addition, this information 
can be inaccurate and lack of precision due to its acquisition method. Many studies propose methods to replace the 
numeric values (Table 1) by binary values in order to represent the relationships between the objects and the formal 
context attributes in concept lattice. For instance, 11 use a cut-off threshold to replace values greater than or equal to 
the threshold values by 1 and the rest by 0. The method in 12 is to set a threshold δ, and then turn the context into a 
binary one by replacing values less than δ with 0 and 1 the others. However, these thresholds are calculated based on 
numerical values in the formal context regardless of the semantic link between the attributes. 13 propose a method by 
intervals; two bounds are defined for each attribute: an upper bound and a lower bound. The formal context is then 
transformed into binary context by replacing values that are not in the interval with 0 and those that are to 1. 
Similarly, 14 also proposes an intervals method, in which each numeric attribute is converted into n binary attributes, 
each one representing a range of values of a numerical attribute. Also, 15 defines a method able to reflect all intervals 
of possible attribute values. But even with roughly large data, e.g. 200 objects and 200 attributes and a hundred 
different attribute values, building the concept lattice from the resulting formal context is shown by 16 to be very 
difficult.  
 

 

Fig. 1. Galois lattice associated to the formal context of Table 1 

3. Proposition and methodology 

Our proposal consists in refining formal contexts according to a relevance measure based on the frequency of 
applications used in the various context elements. We propose two frequency measures that rely respectively on the 
collected data and on the additional semantic information from context ontology. The obtained frequency values are 
used to build a refined formal context, following two strategies called high and low, focusing respectively on the 
most and least frequent context elements and applications. The experiment performed in Section 4 evaluates both 
frequency measures and both strategies for formal context generation. In the following, we provide more details 
about each step of our methodology. 
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3.1. Frequency measures 

The first frequency measure F is solely based on the number of occurrences of each application in each context 
element, and does not rely on any external –semantic-information. For example (Table 2), for the SMS application of 
Table 1, each value from the initial data is divided by the total number of occurrences (i.e., 506).  

Table 2. Example using frequency measure F.  

Applications University Restaurant Parents’ 
home 

Home Transportation 3G Morning Coffee 
break 

Lunch 
break 

Afternoon  Evening 

SMS 80/506 1/506 5/506 30/506 50/506 170/506 40/506 20/506 40/506 60/506 10/506 

 
The semantic frequency measure Fs relies on a context ontology, which reflects the various categories of context 
elements, e.g.: time, location and connection network. The ontology we have used for our experiment is presented in 
Figure 2. Fs divides the number of occurrences of each application in each context by the total number of 
occurrences of this application in the context elements from the same category in the ontology. For example (Table 
3), for the SMS application of Table 1, the values related to the location context are therefore divided by 166, which 
correspond to 80 (university) + 1 (restaurant) + 5 (parent’s home) + 30 (home) + 50 (transportation): 

Table 3. Example using semantic frequency measure Fs.  

Applications University Restaurant Parents’ 
home 

Home Transportation 3G Morning Coffee 
break 

Lunch 
break 

Afternoon  Evening 

SMS 80/166 1/166 5/166 30/166 50/166 170/170 40/170 20/170 40/170 60/170 10/170 

 

 
Fig. 2. Context ontology 

3.2. Strategies for Formal Context Generation 

The average frequency value is computed for each application, i.e., for each line of the table. The high strategy 
consists in assigning the binary value of 1 to the most frequent context elements of each application. In other terms, 
for each application, each value greater than a given high_threshold for this application is associated to 1, and the 
others to 0. We define the high_threshold as follows: 

high_threshold = average_frequency + β * frequency_standard_deviation (β is a positive or null float)  
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The higher β is, the more restrictive the refinement is, i.e., the fewer values are assigned to a “1” in the resulting 
formal context, and therefore taken into account for the Galois lattice generation. For example (Table 4), if we 
consider the SMS application and a value of 0 for the β parameter (bearing in mind that we have tested other values 
of β), each value greater than the high_threshold (0.27) is assigned to 1 and the others to 0. The corresponding line 
in the new formal context is: 

Table 4. Example with a high_threshold and β=0.  

Applications University Restaurant Parents’ 
home 

Home Transportation 3G Morning Coffee 
break 

Lunch 
break 

Afternoon  Evening 

SMS 1 0 0 0 1 1 0 0 0 1 0 

 
On the other hand, the second strategy, called low strategy, assigns 1 to the frequencies that are lower than a 

low_threshold for each application, where: 

low_threshold = average_frequency - β * frequency_standard_deviation (β is a positive or null float) 

For the SMS application, with β=0, the resulting (Table 5) formal context with the low strategy is: 

Table 5. Example with a low_threshold and β=0.  

Applications University Restaurant Parents’ 
home 

Home Transportation 3G Morning Coffee 
break 

Lunch 
break 

Afternoon  Evening 

SMS 0 1 1 1 0 0 1 1 1 0 1 

 
The following Section describes our experiment using these strategies and measures. 

4. Experiment  

We have evaluated our proposal on data collected from a questionnaire filled by 28 master students of our 
university. The goal of this survey was to know in which context and on which device they had been using 
applications (such as social networks, games, emails, etc.) during a week. The students have indicated how many 
times they have used each application in various contexts (the context elements were not pre-defined: they have 
been filled in by the students themselves) using a questionnaire instead of an application for automatically recognize 
context elements allows us to consider context elements that are not predefined by the observation mechanism, 
offering more flexibility for the volunteers students. The ontology presented in Figure 2 has been built in order to 
reflect all the context elements that have been mentioned in the questionnaires. 

4.1. Evaluated strategies 

In this experiment, we have evaluated 4 strategies for formal context generation: 
- Strategies 1 and 2 are high strategies that focus on the most frequent context elements for each application. 

Both strategies differ by the frequency measure: strategy 1 does not use any semantic information, whereas 
strategy 2 relies on the context ontology (Fs measure). 

- Strategies 3 and 4 are low strategies that focus on least frequent context elements for each application. 
Strategy 3 uses frequency F, whereas strategy 4 uses Fs. 

     Table 5. Strategies description. 

 Most frequent context Least frequent context 

First frequency (F) S1 S3 

Semantic frequency(Fs) S2 S4 

 
Each strategy has been tested with various values, more or less restrictive, of the refinement threshold, i.e., 

associated to different values of β parameter (respectively 0, 0.25, 0.5, 0.75, 1 and 1.5). We should mention that the 
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values of β were not chosen randomly, we have begun with the value of zero for β and then we increased the value 
of β slightly. Further on we analyzed the results after using the different values, stopping when the number of 
relations was very limited to extract and interpret the results. 

4.2. Comparison of frequency measures 

We first compare the various strategies for the least restrictive refinement threshold, i.e. 
high_threshold=low_threshold=average_frequency (for both frequency measures). Strategies using the same 
frequency measure can be compared, i.e., strategies 1 and 3 on the one hand, and strategies 2 and 4 on the other 
hand. As we could expect, the frequencies obtained with the measure that is based on the context ontology are more 
relevant than the ones obtained from the one that relies on no semantic information. For example, the 3G context 
element does not appear as very significant among all other context elements in strategy 1, whereas the ontology 
indicates that it is indeed the only context element related to the type of network connection in this dataset, and 
therefore it should not be neglected. However, our experiment shows that even without using an ontology-based 
frequency measure, our methodology for building formal contexts that reflect the impact of context elements on 
applications still provides interesting results with regard to resulting Galois lattices.  

In the following, for space reasons, we focus only on ontology-based strategies (2 and 4), that have provided 
optimal results. 

4.3.  Comparison of refinement strategies 

With β=0, both high and low strategies lead to larger Galois lattices; it means that the refined formal context 
generates more concepts, as illustrated in Figure 3 for the high strategy. This lattice is more interesting than the 
original lattice of figure 1 for recommendation and personalization purposes, as more clusters of applications and 
context elements are generated, leading to a finer-grained classification. In Figure 1 for example, Flappy bird, SMS, 
telephone, VDM and Youtube applications have in common the context elements 3G, home and morning, whereas 
they are separated into 2 concepts in Figure 3: Gmail, VDM and Youtube are associated to 3G and morning, and 
Flappy bird, telephone, VDM and Youtube are associated to 3G and home. It means that after the refinement 
strategy, Flappy bird and telephone are no longer associated to the morning (and will therefore not be considered as 
very likely to be used in the morning).   
 

 
Fig. 3. Galois lattice obtained with strategy 3 (ontology-based frequency measure and high_threshold), with β=0 

We also notice that some context elements have disappeared from the lattice, as they have not sufficient impact 
on the user applications: coffee break, restaurant, parents’ home and lunch break. It is interesting to remark that the 
number of concepts in the lattice increases despite the disappearance of 4 context elements. This shows that the 
precision of the obtained results has indeed increased significantly with regard to the initial lattice. 

The formal contexts obtained with higher values of the β parameter, i.e., with stronger refinement conditions, 
generate smaller Galois lattices than the ones obtained with β=0 (for both high and low strategies). For our 
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recommendation and personalization purposes, we therefore choose the lower value of β as large lattices provide a 
finer granularity.  

We will not show the lattice obtained for the low-strategy β=0 and for space reasons, but it stresses the context 
elements which are rarely associated to the applications of a given user. For example, one of the obtained concepts 
associates telephone and Youtube to coffee break, evening, lunch break, parents’ home, restaurant and university. It 
means that this student has (barely) not used these applications in these contexts. This information is very valuable 
to understand application usages. Service and application designers may want to exploit it to try and find incentives 
to motivate users to use them in wider contexts. 

5. Conclusion and perspectives 

In this paper we have proposed strategies and relevance measures for data refinement in Pervasive Information 
Systems to assess the relevance of contextual data through Formal Concept Analysis. We have proposed a 
methodology to apply refinement strategies with different frequency measurements on contextual elements. The 
lattice construction based on refined formal contexts has allowed us to identify sets of relevant contextual elements. 
We have applied our proposal to a case study based on real data. We should mention that the collected data was used 
to run an offline analysis to evaluate and validate the potential results. However, an online analysis will be done in 
our future research, considering that the interest of such analysis during the runtime. In future work, we will use 
more restrictive threshold values, knowing that the best results were obtained when for β=0. Another perspective is 
to analyze and compare the results of all students, by doing an automatic interpretation taking in account all 
different strategies and values. Currently, we want to a find relevant new interpretations on each Galois lattice based 
on application usage according contextual elements, these interpretations are based on statistics and calculations 
through lattice. Also we want to compare the entire Galois lattice representing the results of our refinement 
strategies. We use the dataset of users to build our strategies. These data represent the different applications with 
different user device and the contextual elements.  
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