
HAL Id: hal-01164797
https://hal-paris1.archives-ouvertes.fr/hal-01164797

Submitted on 17 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The inf-convolution between algebra and optimization.
Applications to the Banach-Stone theorem.

Mohammed Bachir

To cite this version:
Mohammed Bachir. The inf-convolution between algebra and optimization. Applications to the
Banach-Stone theorem.. 2015. <hal-01164797>

https://hal-paris1.archives-ouvertes.fr/hal-01164797
https://hal.archives-ouvertes.fr


To cite this version:

Mohammed Bachir. The inf-convolution between algebra and optimization. Applications to
the Banach-Stone theorem.. 24 pages. 2014. <hal-01074025>

HAL Id: hal-01074025

http://hal.univ-paris1.fr/hal-01074025

Submitted on 12 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstrat. This work generalize and extend results obtained reently in [2℄ from the

Banah spaes framework to the groups framework. We study abstrat lasses of fun-

tions monoids for the inf-onvolution struture and give a omplete desription of the

group of unit of suh monoids. We then apply this results to obtain various versions

of the Banah-Stone theorem for the inf-onvolution struture in the group framework.

We also give as onsequene an algebrai proof of the Banah-Dieudonée theorem. Our

tehniques are based on a new optimization result.

Keyword, phrase: Inf-onvolution; group of unit; isomorphisms and isometries on

metri groups and monoids, the Banah-Stone theorem.

2010 Mathematis Subjet: 46B03-46B04-4620-20M32.

Contents

1 Introdution. 2

1.1 Motivation and example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The main algebrai results for the inf-onvolution. . . . . . . . . . . . . 3

1.3 The main optimization results for the inf-onvolution. . . . . . . . . . . 5

1.4 Organization of the paper. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Aknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Examples. 6

3 The proof of the main optimization results. 7

4 The inf-onvolution and algebra. 9

4.1 Properties and useful lemmas. . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.1 The semigroup F0(X). . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.2 The semigroup F(X). . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 The main algebrai result: the group of unit. . . . . . . . . . . . . . . . 14

1



5 Appliations to the Banah-Stone theorem. 15

6 Appliation to the Banah-Dieudonée Theorem. 17

2



1 Introdution.

We proved reently in [2℄ a version of the Banah-Stone theorem for the inf-onvolution

struture. More preisely, if (X, ‖.‖) is a Banah spae and CL1(X) denotes the set of all
1-Lipshitz onvex and bounded from below funtions, then (CL1(X),⊕) is a ommu-

tative monoid having e = ‖.‖ as identity element for the operation ⊕ of inf-onvolution.

We proved that this monoid equipped with a natural metri, ompletely determine the

Banah struture of X. In [2℄ we used the Banah-Dieudonné theorem (See Theorem

9) whih applies only in this onvex framework.

In this artile we establish general results in the the group framework instead of

the Banah spaes and we handle more general monoids. The tool used in this paper

is a new result of optimization. Our �rst motivation is to prove a new versions of the

Banah-Stone theorem for the inf-onvolution struture in the group framework. For

this purpose, we are going to study and give a omplete and expliit desription of the

group of unit of general and abstrat lass of monoids for the inf-onvolution struture.

Historially, the inf-onvolution appeared as tool of funtional analysis and optimiza-

tion (See for instane the work of [7℄, [10℄, [5℄, [12℄) but it turns out as we are going

to reveal it in this artile, that the inf-onvolution also enjoys a remarkable algebrai

properties. Reall that the Banah-Stone theorem asserts that the Banah struture of

the spae (C(K), ‖.‖∞) of ontinuous funtions on a ompat spae K ompletely de-

termine the topologial struture ofK. More preisely, the Banah spaes (C(K), ‖.‖∞)
and (C(L), ‖.‖∞) are isometrially isomorphi if and only if the ompat spaes K and

L are homeomorphi. The Banah-Stone theorem has been extended on various dire-

tions and other struture are onsidered by authors like the Banah algebra struture

or unital vetor lattie struture. The literature being very rih on this questions, we

send bak to the referene [3℄ for a more omplete history and examples of extensions

(See also [1℄ for the Banah-Stone theorem for the Banah struture on abstrat lass

of funtion spaes).

In all this paper, we assume that (X, ., eX ) is a group (not neessarily abelian)

denoted multipliatively and having the identity element eX . By F(X) we denote the

set of all maps de�ned from X into R and bounded fom below. The inf-onvolution

operation on F(X) (See also Moreau [7℄, [8℄) is de�ned by

(f ⊕ g)(x) = inf
yz=x

{f(y) + g(z)} .

= inf
z∈X

{
f(xz−1) + g(z)

}
.

In general f ⊕ g 6= g ⊕ f if X is not assumed to be an abelian group.

Clearly, (F(X),⊕) is a semigroup. If moreover X is an abelian group then (F(X),⊕)
is a ommutative semigroup. The semigroup F(X) is equiped with the useful metri :

d(f, g) := sup
x∈X

|(f(x)− infX f)− (g(x) − infX g)|

1 + |(f(x)− infX)− (g(x)− infX g)|
+ | inf

X
f − inf

X
g|, ∀f, g ∈ F(X).

The following formulas is always true

inf
X
(f ⊕ g) = inf

X
f + inf

X
g; ∀f, g ∈ F(X).
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This guarantees in partiular that F0(X) := {f ∈ F(X) : infX f = 0} is a subsemigroup

of (F(X),⊕).

1.1 Motivation and example.

The proposition bellow is the kind of results that we wish to show in this artile.

De�nition 1 Let (X,m) be a metri group. We say that (X,m) is a metri invariant

group if the metri m is invariant i.e

m(x, y) = m(ax, ay) = m(xa, ya) ∀x, y, a ∈ X.

If moreover (X,m) is omplete we say that (X,m) is omplete metri invariant group.

Remark 1 Every Fréhet spae is a omplete metri invariant group. For example of

a non abelian omplete metri invariant group see Example 2.

We denote by (Lip0(X),⊕) the semigroup of all Lipshitz and bounded from below

funtions f de�ned on (X,m) suh that infX f = 0 and Lip10(X) the monoid inluded

in Lip0(X) of all 1-Lipshitz map. the monoid Lip10(X) has the map ϕm : x 7→ m(x, eX)
as identity element. The symbol

∼= denotes �isometrially isomorphi�.

We obtain the following version of the Banah-Stone theorem for the inf-onvolution

struture whih say that the monoid (Lip10(X),⊕) ompletely determine the omplete

metri invariant group (X,m).

Proposition 1 Let (X,m) and (Y,m′) be omplete metri invariant group. Then the

following assertion are equivalent.

(1) (X,m) ∼= (Y,m′) as groups.

(2) (Lip10(X), d) ∼= (Lip10(Y ), d) as monoids.

(3) There exits a semigroup isomorphism isometri Φ : (Lip0(X), d) → (Lip0(Y ), d)
suh that Φ(ϕm) = ϕm′

.

The proof of this result is based on the following two arguments ( and follows from the

more general Theorem ??):

(1) An isomorphism of monoids send the group of unit U(Lip10(X)) of Lip10(X) on the

group of unit U(Lip10(Y )) of Lip10(Y ).

(2) The group of unit U(Lip10(X)) equipped with the metri d is isometrially isomorphi

to (X, m
1+m

). This is also equivalent to the fat that U(Lip10(X)) equiped with the metri

d∞ is isometrially isomorphi to (X,m), where d∞(f, g) := supx∈X {|f(x)− g(x)|} <
+∞ for all f, g ∈ U(Lip10(X)).

1.2 The main algebrai results for the inf-onvolution.

The study of abstrat subsemigroups or submonoids of F(X) follows from the study of

subsemigroups or submonoids of F0(X).

Proposition 2 (F(X),⊕, d) ∼= (F0(X)×R,⊕, d1) as semigroups. Where (f, t)⊕(g, s) :=
(f ⊕ g, t+ s) and d1((f, t); (g, s)) := d(f, g) + |t− s| for all (f, t), (g, s) ∈ F0(X) × R.
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Our result in this paper also applies for general monoids inluded in F0(X). Let

M0,ϕ(X) be an abstrat monoid of F0(X) and having ϕ as identity element, then ϕ is in

partiular an idempotent element i.e ϕ⊕ϕ = ϕ. We wonder then if the result obtained in

Proposition 1 hold for the abstrat lass of monoid M0,ϕ(X). The answer is a�rmative

for idempotent element ϕ satisfying the ondition : ϕ(x) = ϕ(x−1) = 0 ⇔ x = eX .
This motivates the following de�nition. Note that every monoid M0,ϕ(X) having ϕ as

identity element is a submonoid of the following formal monoid

F0,ϕ(X) := {f ∈ F0(X) : f ⊕ ϕ = ϕ⊕ f = f} .

Let us remark that sine infX(f ⊕ g) = infX f + infX g; ∀f, g ∈ F(X), then every

idempotent element of F(X) belongs neessarily to F0(X) i.e ϕ ⊕ ϕ = ϕ ⇒ ϕ ≥ 0 =
infX ϕ.

De�nition 2 Let ϕ ∈ F(X). We say that ϕ is a remarkable idempotent if ϕ is an

idempotent element and satisfy the following two properties:

(1) ϕ(xy) = ϕ(yx) pour tout x, y ∈ X (Always true if X is ommutative).

(2) ϕ(x) = ϕ(x−1) = 0 ⇔ x = eX .

We have the following more expliit haraterization of remarkable idempotent (see

setion 3.).

Proposition 3 Let ϕ ∈ F(X). Then, ϕ is remarkable idempotent if and only if ϕ
satisfay :

(1) ϕ(xy) = ϕ(yx) for all x, y ∈ X.

(2) ϕ(x) = ϕ(x−1) = 0 ⇔ x = eX .

(3) ϕ(xy) ≤ ϕ(x) + ϕ(y) pour tout x, y ∈ X (i.e ϕ is subadditive).

For eah remarkable idempotent ϕ we an assoiate in a anonial way the metri ∆∞,ϕ

on X de�ned by ∆∞,ϕ(x, y) := max(ϕ(xy−1), ϕ(yx−1)). We denote by (X,∆∞,ϕ)
the group ompletion of (X,∆∞,ϕ). We denote by ϕ the unique extension of ϕ to

(X,∆∞,ϕ) sine ϕ is 1-Liphitz for the metri ∆∞,ϕ by subadditivity. Note that

(X,∆∞,ϕ) =(X,∆∞,ϕ) and that ϕ is also a remarkable idempotent. We need the

following set whih is a generalization of the set of 1-Lipshitz funtions :

Lip10,ϕ(X) :=
{
f ∈ F0(X) : f(x)− f(y) ≤ ϕ(xy−1); ∀x, y ∈ X

}
.

Sine ϕ(xy−1) ≤ ∆∞,ϕ(x, y) and ∆∞,ϕ is a metri invariant then Lip10,ϕ(X) is a subset

of Lip10(X) of all 1-Lipshitz map f on (X,∆∞,ϕ) suh that infX f = 0.

We have the following useful identi�ation between the formal monoid F0,ϕ(X) and
the more expliit set Lip10,ϕ(X).

Proposition 4 Let ϕ ∈ F(X) be a remarkable idempotent. Then F0,ϕ(X) = Lip10,ϕ(X)

and so Lip10,ϕ(X) is a monoid having ϕ as identity element.

Remark 2 We reover from the above proposition the monoid (Lip10(X),⊕) mentioned

in the previous setion from F0,ϕm(X) where ϕm : x 7→ m(x, eX) whih is a remarkable

idempotent.
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Proposition 5 For every remarkable idempotent ϕ ∈ F(X) and every monoidM0,ϕ(X)
we have that M0,ϕ(X) is a submonoid of the monoid Lip10,ϕ(X).

The previous proposition explains that the study of abstrat monoids of F0(X) ensues
from the study of the monoid Lip10,ϕ(X).

A. The group of unit.

Let us announe now our main algebrai result. We denote by U(Lip10,ϕ(X)) the

group of unit of the monoid (Lip10,ϕ(X),⊕).

Theorem 1 Let ϕ ∈ F(X) a remarkable idempotent. Then,

(U(Lip10,ϕ(X)), d∞) ∼= (X,∆∞,ϕ)

as groups. This is also equivalent to

(U(Lip10,ϕ(X)), d) ∼= (X,
∆∞,ϕ

1 + ∆∞,ϕ

).

Sine the ompletion of metri spaes is unique up to isometry, the following orollary

gives an alternative way to onsiderer the ompletion of group metri invariant.

Corollary 1 Let (X,m) a group metri invariant. Then

(X,m) ∼= (U(Lip10(X)), d∞).

Let us haraterize now the group of unit of abstrat monoid M0,ϕ(X) of F0(X).

Corollary 2 Let ϕ ∈ F(X) be a remarkable idempotent. Let M0,ϕ(X) be an abstrat

monoid of F0(X) having ϕ as identity element. Then the group of unit U(M0,ϕ(X)), d)

of M0,ϕ(X) is isometrially isomorphi to a subgroup of (X,
∆∞,ϕ

1+∆∞,ϕ
).

B. The Banah-Stone theorem.

We obtain now the following general version of the Banah-Stone theorem for the inf-

onvolution struture.

Theorem 2 Let X and Y be tow groups and let ϕ ∈ F(X) and ψ ∈ F(Y ) be two

remarkable idempotents. Then (1) ⇒ (2) ⇒ (3) ⇔ (4) ⇒ (5) ⇒ (6). If moreover we

assume that ϕ and ψ are symetri (i.e ϕ(x) = ϕ(x−1) and ψ(y) = ψ(y−1) for all x ∈ X
and all y ∈ Y ), then (1) − (6) are equivalent.

(1) There exist a group isomorphism T : X → Y suh that ψ ◦ T = ϕ.

(2) There exist a semigroup isomorphism isometri Φ : F(X) → F(Y ) sush that Φ(0) =
0 and Φ(ϕ) = ψ.

(3) There exist a semigroup isomorphism isometri Φ : F0(X) → F0(Y ) sush that

Φ(ϕ) = ψ.

(4) (Lip10,ϕ(X), d) ∼= (Lip1
0,ψ

(Y ), d) as monoids.

(5) (Lip10,ϕ(X), d) ∼= (Lip1
0,ψ(Y ), d) as monoids.

(6) (X,∆∞,ϕ) ∼= (Y ,∆∞,ψ) as groups.
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1.3 The main optimization results for the inf-onvolution.

The algebrai main results of the previous setions follows from the following optimiza-

tion result whih applies on a general group metri invariant (not neessarily abelian).

This result have many of other appliations of optimization in partiular for the reso-

lution of the inf-onvolution equations.

De�nition 3 Let (X,m) be a metri spae, we say that a funtion f has a strong

minimum at x0 ∈ X, if infX f = f(x0) and m(xn, x0) → 0 whenever f(xn) → f(x0).
A strong minimum is in partiular unique.

Theorem 3 Let (X,m) be a omplete metri invariant group with the identity element

eX . Let f and g be two lower semi ontinuous funtions on (X,m). Suppose that the

map x 7→ f ⊕ g(x) + f ⊕ g(x−1) has a strong minimum at eX and f ⊕ g(eX) = 0. Then
there exists z0 ∈ X suh that :

(1) the map η : z → f(z−1) + g(z) has a strong minimum at z0 ∈ X (we say that

f ⊕ g(eX ) is attained strongly at z0).

(2) f(x) ≥ f ⊕ g(xz0) + f(z−1
0 ) and g(x) ≥ f ⊕ g(z−1

0 x) + g(z0) for all z ∈ X.

The following result shows that a strong linear perturbation of the onvolution f ⊕ g
at some point x0 of two lower semi ontinuous funtions f and g leads to a strong

perturbation of f and g with the same perturbation on respetively some points x1 and
x2 suh that x1x2 = x0.

Corollary 3 Let (X,m) be a omplete metri invariant group with the identity element

eX . Let p : X → R be a group morphism and f and g be two lower semi ontinuous

funtions on (X,m). Suppose that the map x 7→ f ⊕ g(x)− p(x) has a strong minimum

at x0 , then there exists z0 ∈ X suh that

(1) the map η : z → f(x0z
−1) + g(z) has a strong minimum at z0 ∈ X i.e f ⊕ g(x0) is

attained strongly at z0.

(2) f − p has a strong minimum at x0z
−1
0 and g − p has a strong minimum at z0.

1.4 Organization of the paper.

This artile is organied as follow. In setion 2. we give some examples of omplete

metri invariant group, remarkable idempotent and monoids for the inf-onvolution

struture. In setion 3. we give the proof of our main optimization result Theorem

5 (Theorem 3 in the introdution). In setion 4. we give several algebrai properties

of the inf-onvolution struture and the proof of our main algebrai result Theorem 6

(Theorem 1 in the introdution). In setion 5. We give various versions of the Banah-

Stone theorem and the proof of the main result of this setion Theorem 7 (Theorem 2

in the introdution). Finally in setion 6. We give an algebrai proof of the well know

Banah-Dieudonné theorem (See Theorem 9).

1.5 Aknowledgments.

The author thanks Professor Gilles Godefroy for the diverse disussions as well as for

his invaluable advie.
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2 Examples.

A. Complete metri invariant groups.

Exemples 1 (Abelian group ase).

(1) Every Fréhet spae is omplete metri invariant group. In partiular every Banah

spae equiped with the metri assoiated the the norm is a omplete metri invariant

group.

(2) Let E be a set of �nite ardinal and P(E) the set of all subset of E. The set

(P(E),∆) is an abeliean group, where ∆ is the symmetri di�erene between two sets

: A∆B = (A ∪ B) \ (A ∩ B) for all A,B ∈ P(E). We denote by |A| the ardinal

of A. Then (P(E),m) is a omplete metri group where m is the metri de�ned by

m(A,B) = |A∆B|
|E| on P(E).

(3) Every group X is omplete metri invariant group for the disrete metri.

Exemples 2 (Non abelian group ase). Let H be a real separable Hilbert spae,

O(H) be the orthogonal group on H and I be the identity operator. We denote by

Oc(H) := {T ∈ O(H) : I − T is a omat operator}

and

Oh(H) := {T ∈ O(H) : I − T is a Hilbert-Shmidt operator} .

The metris dc and dh as de�ned as follow : dc(T, S) = ‖T − S‖op and dh(T, S) =
‖T − S‖HS where ‖.‖op is the norm operator and ‖.‖HS is the Hilbert-Shmidt norm

‖A‖2HS = Tr|(A
∗

A)| :=
∑

i∈I

‖Aei‖
2

where ‖.‖ is the norm of H and {ei : i ∈ N} an orthonormal basis of H. This de�nition

is independent of the hoie of the basis.

Theorem 4 (See [[11℄, Theorem 1.1℄) (OC(H), dc) and (Oh(H), dh) are omplete

separable metri invariant (non abeliean) groups.

B. Remarkable idempotent.

Exemples 3

(1) Let (X,m) be a metri invariant group with the identity element eX and 0 < α ≤ 1.
Then the map ϕ in the following ases is remarkable idempotent in F(X). In this as

ϕ is symetri ϕ(x) = ϕ(x−1) for all x ∈ X.

(a) the map ϕ(x) := m(eX , x)
α
for all x ∈ X.

(b) Let χ : R+ → R
+
be an inreasing and sub-additive funtion having a strong

minimum at 0 and suh that χ(0) = 0. We de�ne ϕ as follow. ϕ(x) :=
χ(m(eX , x)

α).

(2) Let (X, ‖.‖X ) be a real normed vetor spae. Let C be a onvex bounded sub-

set of X ontaining the origin. Then the Minkowski funtional ϕC(x) :=
inf {λ > 0 : x ∈ λC} for all x ∈ X is remarkable idempotent.

8



(3) Let (X, ‖.‖X ) be a vetor normed spae , and K ⊂ X∗
be a onvex weak-star losed

and bounded suh that int(K) 6= ∅ (int(K) denotes the interior of K for the

norm topology). Then the support funtion de�ned by σK(x) := supp∈K p(x) is
remarkable idempotent.

(4) Let X be any group with the identity element eX . Then the map ϕeX de�ned by

ϕeX (eX) = 0 and ϕeX (x) = 1 if x 6= eX is remarkable idempotent.

C. Examples of monoids for the inf-onvolution.

Exemples 4

(1) Let (X, ‖.‖X ) be a Banah spae and and K ⊂ X∗
be a onvex weak-star losed and

bounded suh that int(K) 6= emptyset. Let LC(X) the set of all bounded from below

onvex and Lipshitz funtions on X. Then (M0,σK (X),⊕) := (LC(X)∩Lip0,σK (X),⊕)
is a monoid having σK as identity element. If K = BX∗

then σK = ‖.‖ and in this ase

we reover the monoid studied in [2℄.

(2) Let (X,m) be a omplete metri invariant group with identity element eX and let

0 < α ≤ 1 and ϕm(x) = mα(ex;x) for all x ∈ X. Let Lipα(X) be the set of all bounded

from below, α-Hölder funtions on X and Lipα(X) is the set of all α-Hölder funtions

on X suh that infX f = 0. Then Lipα(X) and Lipα(X) are monoid having ϕm as

identity element.

(3) Let IC(Rn) be the set of all inf-ompat funtions from R
n
into R and let 0 < α ≤ 1.

Then (IC(Rn),⊕) is a semigroup (See [7℄) and IC(Rn)∩Lipα(Rn) is a monoid having

ϕ = ‖.‖α as identity element.

(4) Let X be any algebrai group with the identity element eX and let m be the disrete

distane on X and δeX (x) = 0 if x = eX and take the value 1 otherwise. Let F1(X) ={
f : X → R : supx,y∈X |f(x)− f(y)| ≤ 1

}
and F1

0 (X) := {f : X → [0, 1] : infX f = 0}.
Then F1(X) and F1

0 (X) are monoids having δeX as identity element.

3 The proof of the main optimization results.

Theorem 5 Let (X,m) be a omplete metri invariant group with the identity element

eX . Let f and g be two lower semi ontinuous funtions on (X,m). Suppose that the

map x 7→ f ⊕ g(x) + f ⊕ g(x−1) has a strong minimum at eX and f ⊕ g(eX) = 0. Then
there exists z0 ∈ X suh that :

(1) the map η : z → f(z−1) + g(z) has a strong minimum at z0 ∈ X.

(2) f(x) ≥ f ⊕ g(xz0) + f(z−1
0 ) and g(x) ≥ f ⊕ g(z−1

0 x) + g(z0) for all z ∈ X.

Proof. (1) Let (zn)n ⊂ X be suh that for all n ∈ N
∗
,

f ⊕ g(eX ) ≤ f(z−1
n ) + g(zn) < f ⊕ g(eX) +

1

n
.

Sine f ⊕ g(eX ) = 0 then

0 ≤ f(z−1
n ) + g(zn) <

1

n
. (1)
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On the other handfor all x, y ∈ X,

f ⊕ g(xy−1) ≤ f(x) + g(y−1) (2)

f ⊕ g(yx−1) ≤ f(y) + g(x−1). (3)

By adding both inequalilies (2) and (3) above we obtain for all x, y ∈ X

f ⊕ g(xy−1) + f ⊕ g(yx−1) ≤
(
f(x) + g(x−1)

)
+
(
f(y) + g(y−1)

)
. (4)

By appllaying the above inequality with x = z−1
n and y = z−1

m , we have

f ⊕ g(z−1
n zm) + f ⊕ g(z−1

m zn) ≤
(
f(z−1

n ) + g(zn)
)
+

(
f(z−1

m ) + g(zm)
)

From our hypothesis we have that the map z → f ⊕ g(z) + f ⊕ g(z−1) has a stong

minimum at eX with 0 = f ⊕ g(eX)+ f ⊕ g(e−1
X ). So from the above inequality and (1)

we obtain

0 ≤ f ⊕ g(z−1
n zm) + f ⊕ g(z−1

m zn) ≤
1

n
+

1

m
.

Thus f ⊕ g(z−1
n zm) + f ⊕ g((z−1

n zm)
−1) → 0 when n,m → +∞ whih implies that

m(eX , z
−1
n zm) → 0 or equivalently m(zn, zm) → 0 sine m is invariant. Thus the

sequene (zn)n is Cauhy in (X,m) and so onverges to some z0 sine (X,m) is a

omplete metri spae. By the lower semi-ontinuity of f and g, the ontinuity of

z → z−1
and by using the formulas (1) we get

f(z−1
0 ) + g(z0) ≤ 0 = f ⊕ g(eX).

On the other hand, by de�nition we have f ⊕ g(eX ) ≤ f(z−1
0 ) + g(z0). Thus

f(z−1
0 ) + g(z0) = f ⊕ g(eX ) = 0. (5)

It follows that η has a minimum at z0 ( by de�nition we have infz∈X η(z) = f ⊕ g(eX)).
To see that η has a strong minimum at z0, let (xn)n be any sequene suh that

f(x−1
n ) + g(xn) → infz∈X

{
f(z−1) + g(z)

}
= 0. By applying (4) with x = z−1

0 and

y = x−1
n and the formulas (5) and (1) with the fat that f ⊕ g(z) + f ⊕ g(z−1) ≥ 0 for

all z ∈ X, we obtain that f ⊕ g(z−1
0 xn)+ f ⊕ g(x

−1
n z0) → 0 whih implies by hypothesis

that m(xn, z0) → 0. Thus z0 is a strong minimum of η.

(2) Using the part (a) we have that 0 = f ⊕ g(eX ) = f(z−1
0 ) + g(z0). We have

f ⊕ g(z−1
0 x) = inf

y∈X

{
f(z−1

0 xy−1) + g(y)
}

≤ f(z−1
0 ) + g(x)

= −g(z0) + g(x). (6)

and

f ⊕ g(xz0) = inf
y∈X

{
f(xz0y

−1) + g(y)
}

≤ f(x) + g(z0)

= −f(z−1
0 ) + f(x). (7)

This ends the proof of (2).
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Lemma 1 Let (X,m) be a metri group with the identity element eX and let h : X → R.

Suppose that h has a strong minimum at eX and h(eX) = 0, then the map x 7→ h(x) +
h(x−1) has a strong minimum at eX and h(eX ) = 0.

Remark 3 The onverse of the above proposition is not true in general (Take h(x) =
x+ |x| on X = (R,+)).

Proof : Sine h has a strong minimum at eX and h(eX) = 0 then h(x) ≥ h(eX) = 0
for all x ∈ X. So h(x) + h(x−1) ≥ 0. On the other hand, we have h(eX ) + h(e−1

X ) =
2h(eX) = 0, and so x → h(x) + h(x−1) has a minimum at eX . Let us show that eX is

a strong minimum for x→ h(x) + h(x−1). Indeed, sine h ≥ 0, then we have,

0 ≤ h(x) ≤ h(x) + h(x−1)

for all x ∈ X. If (zn)n is a sequene suh that h(zn)+h(z
−1
n ) → infx∈X

(
h(x) + h(x−1)

)
=

0 then by the above inequalities we have that h(zn) → 0 whih implies that zn → eX
sine h has a strong minimum at eX . Thus x → h(x) + h(x−1) has a strong minimum

at eX and h(eX) = 0.

Corollary 4 Let (X,m) be a omplete metri invariant group with the identity element

eX . Let p : X → R be a group morphism and f and g be two lower semi ontinuous

funtions on (X,m). Suppose that the map x 7→ f ⊕ g(x)− p(x) has a strong minimum

at x0 , then there exists z0 ∈ X suh that

(1) the map η : z → f(x0z
−1) + g(z) has a strong minimum at z0 ∈ X and f(x0z

−1
0 ) +

g(z0) = f ⊕ g(x0). In partiular f ⊕ g(x0) is exat at x0.

(2) f − p has a strong minimum at x0z
−1
0 and g − p has a strong minimum at z0.

Proof. First, note that f ⊕ g(x)− p(x) = (f − p)⊕ (g− p)(x) for all x ∈ X sine p is a
group morphism. Let us set c := f ⊕ g(x0)− p(x0) and h : t 7→ f ⊕ g(x0t)− p(x0t)− c.
Then h has a strong minimum at eX sine by hypothesis x 7→ f⊕g(x)−p(x) has a strong
minimum at x0. Let us denote by f̃ : t 7→ f(x0t) − p(x0t) − c and g̃ : t 7→ g(t) − p(t).
Then we have that f̃ and g̃ are lower semi-ontinuous and f̃ ⊕ g̃ = h. We dedue then

that the map x 7→ f̃ ⊕ g̃(x) has a strong minimus at eX . Thus by Lemma 1 we have

that x 7→ f̃⊕ g̃(x)+ f̃⊕ g̃(x−1) has a strong minimum at eX and we an apply Theorem

5 to obtain the existene of some z0 ∈ X suh that:

(1) the map η : z → f̃(z−1) + g̃(z) has a strong minimum at z0 ∈ X.

(2) f̃(x) ≥ f̃ ⊕ g̃(xz0) + f̃(z−1
0 ) and g̃(x) ≥ f̃ ⊕ g̃(z−1

0 x) + g̃(z0) for all z ∈ X.

Using the fat that p is a group morphism and by replaing f̃ and g̃ by their expression,

we translate (1) and (2) respetively as follow

(1′) the map η : z → f(x0z
−1) + g(z) has a strong minimum at z0 ∈ X.

(2′) f(x)− p(x) ≥ (f ⊕ g(x) − p(x))− (f ⊕ g(x0)− p(x0))+
(
f(x0z

−1
0 )− p(x0z

−1
0 ) and

g(x)− p(x) ≥
(
f ⊕ g(x0z

−1
0 x)− p(x0z

−1
0 x)

)
− (f ⊕ g(x0)− p(x0)) + (g(z0)− p(z0) , for

all x ∈ X.

Using the fat that x 7→ f ⊕ g(x) − p(x) has a strong minimum at x0, this implies

respetively

(1′′) the map η : z → f(x0z
−1) + g(z) has a strong minimum at z0 ∈ X.

(2′′) f(x)− p has a strong minimum at x0z
−1
0 and g − p has a strong minimum at z0.
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4 The inf-onvolution and algebra.

4.1 Properties and useful lemmas.

4.1.1 The semigroup F0(X).

We have the following more expliit haraterization of remarkable idempotent. The

proof follows immediately from Lemma 2.

Proposition 6 Let ϕ ∈ F(X). Then, ϕ is remarkable idempotent if and only if ϕ
satisfay :

(1) ϕ(xy) = ϕ(yx) for all x, y ∈ X.

(2) ϕ(x) = ϕ(x−1) = 0 ⇔ x = eX .

(3) ϕ(xy) ≤ ϕ(x) + ϕ(y) pour tout x, y ∈ X (i.e ϕ is subadditive).

Lemma 2 Let X be a group and eX its identity element. Suppose that ϕ(eX ) = 0. Then
ϕ⊕ ϕ = ϕ if and only if ϕ is sub-additive i.e ϕ(xy) ≤ ϕ(x) + ϕ(y) for all x, y ∈ X.

Proof. (⇒) Suppose that ϕ⊕ ϕ = ϕ. Then

ϕ(xy) = inf
z∈X

{
ϕ(xyz−1) + ϕ(z)

}

≤ ϕ(y) + ϕ(x); ∀x, y ∈ X.

(⇐) For the onverse suppose that ϕ(xy) ≤ ϕ(x)+ϕ(y) for all x, y ∈ X. Then we have

ϕ(x) = ϕ((xz−1)z) ≤ ϕ(xz−1) + ϕ(z);∀x, z ∈ X. Taking the in�nitum over z ∈ X we

get ϕ(x) ≤ ϕ⊕ ϕ(x) for all x ∈ X. Now

ϕ⊕ ϕ(x) = inf
z∈X

{
ϕ(xz−1) + ϕ(z)

}

≤ ϕ(x) + ϕ(eX)

= ϕ(x).

Thus ϕ⊕ ϕ = ϕ.

Lemma 3 Let ϕ ∈ F(X) be a remarkable idempotent. Then

(1) Then for all f ∈ F(X) we have f ⊕ ϕ = ϕ ⊕ f (all elements f ∈ F(X) ommutes

with ϕ).

(2) Lip10,ϕ(X) = F0,ϕ(X) ( in partiular (Lip10,ϕ(X),⊕, ϕ) is a monoid).

(3) Every elements f of F0,ϕ(X) is 1-Lipshitz for the metri ∆∞,ϕ.

Proof. (1) Let us �rst proves that for all f ∈ F(X) we have f ⊕ ϕ = ϕ⊕ f . Indeed, by
using the fat that ϕ(xy) = ϕ(yx) for all x, y ∈ X with the following variable hange

t = xy−1
we have for all x ∈ X,

f ⊕ ϕ(x) = inf
y∈X

{
f(xy−1) + ϕ(y)

}

= inf
y∈X

{
f(t) + ϕ(t−1x)

}

= inf
t∈X

{
ϕ(xt−1) + f(t)

}

= ϕ⊕ f(x)

12



(2) We prove that F0,ϕ(X) ⊂ Lip10,ϕ(X) : Let f ∈ F0,ϕ(X). Then by the de�nition

of F0,ϕ(X) we have ϕ ⊕ f = f ⊕ ϕ = f . We are going to prove that f ∈ Lip10,ϕ(X).
Indeed, let x, y ∈ X and let (zn)n ⊂ X suh that for all n ∈ N

∗

ϕ⊕ f(y) > ϕ(yz−1
n ) + f(zn)−

1

n
(8)

On the other hand ,

ϕ⊕ f(x) ≤ ϕ(xz−1
n ) + f(zn) (9)

By ombining (8) and (9) we have

ϕ⊕ f(x) ≤ ϕ⊕ f(y) + ϕ(xz−1
n )− ϕ(yz−1

n ) +
1

n
(10)

Now using Lemma 2 we have ϕ⊕ ϕ = ϕ and so we have

ϕ(xz−1
n ) = ϕ⊕ ϕ(xz−1

n )

= inf
t∈X

{
ϕ(xz−1

n t−1) + ϕ(t)
}

≤ ϕ(xy−1) + ϕ(yz−1
n ). (11)

Combining (10) and (11) and sending n to +∞ we obtain that

ϕ⊕ f(x) ≤ ϕ⊕ f(y) + ϕ(xy−1).

This shows that ϕ⊕ f ∈ Lip10,ϕ(X). But ϕ⊕ f = f , thus f ∈ Lip10,ϕ(X).

We prove now that Lip10,ϕ(X) ⊂ F0,ϕ(X) : Let f ∈ Lip10,ϕ(X). From part (1) we have

f ⊕ ϕ = ϕ ⊕ f . We are going to prove that f ⊕ ϕ = f . By the de�nition of Lip10,ϕ(X)
we have

f(x) ≤ f(y) + ϕ(xy−1);∀x, y ∈ X.

Taking the in�nimum over y ∈ X, we get f(x) ≤ f ⊕ ϕ(x) for all x ∈ X. For the

onverse inequality we have

f ⊕ ϕ(x) = inf
y∈X

{
f(y) + ϕ(xy−1)

}

≤ f(x) + ϕ(eX )

= f(x).

Thus f ⊕ ϕ = ϕ⊕ f = f and so f ∈ F0,ϕ(X).
(3) This part follows easily from the part (2) and the de�nition of Lip10,ϕ(X). .

Lemma 4 Let ϕ ∈ F(X) be a remarkable idempotent and ϕ be the unique extension

of ϕ to the ompletion (X,∆∞,ϕ). Then (Lip10,ϕ(X), d) ∼= (Lip10,ϕ(X), d) as monoids.

More preisely, the map

χ : (Lip10,ϕ(X),⊕, d) → (Lip10,ϕ(X),⊕, d)

f 7→ f =

[
x̄ 7→ inf

z∈X

{
ϕ(x̄z−1) + f(z)

}]

is an isometri isomorphism.
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Proof. It is easy to see that f ∈ Lip10,ϕ(X) for all f ∈ Lip10,ϕ(X) and that the map χ is

well de�ned sine if f = g on X then learly f = g on X . Observe that the restrition

f|X of f to X oinide with ϕ ⊕ f , by de�nition of f . The map χ is injetive sine, if

f = g on X then by the restrition to X we obtain ϕ ⊕ f = ϕ ⊕ g. Thus f = g sine

Lip10,ϕ(X) = F0,ϕ(X) := {f ∈ F0(X) : f ⊕ ϕ = ϕ⊕ f = f} by Lemma 3. The map χ

is surjetive. Indeed, let F ∈ Lip10,ϕ(X) and set f = F|X the restrition of F to X.

Then by de�nition f(x̄) := infz∈X
{
ϕ(x̄z−1) + F (z)

}
. By the density of X in X and

the ontinuity of ϕ and F on X we have

f(x̄) := inf
z∈X

{
ϕ(x̄z−1) + F (z)

}

= inf
z∈X

{
ϕ(x̄z−1) + F (z)

}

= ϕ⊕ F

= F

The last equality follows from the fat that F ∈ Lip10,ϕ(X) = F0,ϕ(X) by Lemma 3.

Let us show now that χ is a monoid morphism. Indeed, let f, g ∈ Lip10,ϕ(X). Using the

ontinuity of f and g and the density of X in X , we easily see that f ⊕ g and f ⊕ g
oinide on X with f ⊕ g, so by the injetivity of χ−1

we have f ⊕ g = f ⊕ g. Thus χ
is a monoid isomorphism. The fat that χ is isometri follow from the the density of X
on X and a ontinuity argument.

For the proof of the following lemma see [[2℄, Lemma 1℄.

Lemma 5 Let f, g ∈ F0(X). Suppose that d∞(f, g) := supx∈X |f(x) − g(x)| < +∞
then

d(f, g) := sup
x∈X

|f(x)− g(x)|

1 + |f(x)− g(x)|
=

d∞(f, g)

1 + d∞(f, g)
.

For eah �xed point x ∈ X, the map δϕx is de�ned on X by

δϕx : X → R

z 7→ ϕ(zx−1).

We de�ne the subset Gϕ0 (X) of Fϕ(X) by Gϕ0 (X) := {δϕx : x ∈ X} .

The following Lemma is an adaptation to our framework of [[2℄, Lemma 3℄.

Lemma 6 Let ϕ ∈ F(X) be a remarkable idempotent. Then, the map

γϕX : (X,∆∞,ϕ) → (Gϕ0 (X), d∞)

x 7→ δϕx

is a group isometri isomorphism. Or equivalently, the map

γϕX : (X,
∆∞,ϕ

1 + ∆∞,ϕ
) → (Gϕ0 (X), d)

x 7→ δϕx

is a group isometri isomorphism.
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Proof. The seond part of the Lemma follow from the �rst part and Lemma 5, so we

need to prove just the �rst part. Indeed, let x1, x2 ∈ X, we prove that δϕx1 ⊕δ
ϕ
x2 = δϕx1x2 .

Indeed, let x ∈ X, we have :

δϕx1 ⊕ δϕx2(x) = inf
z∈X

{
δϕx1(xz

−1) + δϕx2(z)
}

≤ δϕx1(xx
−1
2 ) + δϕx2(x2)

= ϕ
(
x(x1x2)

−1
)
+ ϕ(eX )

= δϕx1x2(x).

For the onverse inequality, we use fat that ϕ(xy) = ϕ(yx) for all x, y ∈ X and the

sub-additivity of ϕ , to obtain for all z ∈ X

δϕx1x2(x) = δϕx1x2(x)

= ϕ
(
x(x1x2)

−1
)

= ϕ(xx−1
2 x−1

1 )

= ϕ(x−1
1 (xx−1

2 ))

= ϕ((x−1
1 xz−1)(zx−1

2 ))

≤ ϕ(x−1
1 (xz−1)) + ϕ(zx−1

2 )

=
(
ϕ((xz−1)x−1

1 )
)
+ ϕ(zx−1

2 )

= δϕx1(xz
−1) + δϕx2(z)

By taking the in�nimum over z in the last inequality, we obtain

δϕx1x2(x) ≤ δϕx1 ⊕ δϕx2(x).

Thus, δϕx1 ⊕ δϕx2 = δϕx1x2 . In other words,

γϕX(x1x2) = γϕX(x1)⊕ γϕX(x2), ∀x1, x2 ∈ X. (14)

Now by the de�nition of Gϕ(X), γϕX is a surjetive map. Let us prove that γϕX is one

to one. Indeed, let x1, x2 ∈ X be suh that δϕx1 = δϕx2 i.e ϕ(xx−1
1 ) = ϕ(xx−1

2 ) for all
x ∈ X. Sine ϕ satisfy the ondition : ϕ(x) = ϕ(x−1) = 0 ⇔ x = eX then by replaing

x by x1 in a �rst time and x by x2 in a seond time we obtain 0 = ϕ(eX) = ϕ(x1x
−1
2 ) =

ϕ(x2x
−1
1 ) = ϕ(

(
x1x

−1
2 )−1

)
whih implies that x1x

−1
2 = eX i.e x1 = x2. Now, sine X

is a group and γϕX is a bijetive map satisfying the formula (14) then (Gϕ0 (X),⊕) is a
group as image of group by an isomorphism. The identity element of (Gϕ0 (X),⊕) is of
ourse γϕX(eX) = δϕeX = ϕ. Thus γϕX is a group isomorphism.

Let us show now that γϕX is an isometry. By using the sub-additivity of ϕ and the

fat that ϕ(eX) = 0 we have :

d∞(δϕx1 , δ
ϕ
x2
) = sup

x∈X
|δϕx1(x)− δϕx2(x)|

= sup
x∈X

|ϕ(xx−1
1 )− ϕ(xx−1

2 )|

= max

(
sup
x∈X

(ϕ(xx−1
1 )− ϕ(xx−1

2 )), sup
x∈X

(ϕ(xx−1
2 )− ϕ(xx−1

1 ))

)

≤ max
(
ϕ(x2x

−1
1 ), ϕ(x1x

−1
2 )

)

= ∆∞,ϕ(x, y)

15



For the inverse inequality,

d∞(δx1(ϕ), δx2(ϕ)) = sup
x∈X

|δϕx1(x)− δϕx2(x)|

= sup
x∈X

|ϕ(xx−1
1 )− ϕ(xx−1

2 )|

= max

(
sup
x∈X

(ϕ(xx−1
1 )− ϕ(xx−1

2 )), sup
x∈X

(ϕ(x− x2)− ϕ(x− x1))

)

≥ max
(
ϕ(x2x

−1
1 );ϕ(x1x

−1
2 )

)

= ∆∞,ϕ(x, y)

So d∞(δϕx1 , δ
ϕ
x2) = ∆∞,ϕ(x, y). This shows that γ

ϕ
X is an isometry. The seond part of

the Lemma follows from Lemma 5.

4.1.2 The semigroup F(X).

In this setion we prove that using the following proposition, we an dedut results in

the semigroup F(X) anonially from the results of the semi group F0(X).
For all (f, t), (g, s) ∈ F0(X) × R, we denote by (f, t)⊕(g, s) := (f ⊕ g, t + s) and

d1((f, t); (g, s)) := d(f, g) + |t− s|. If ϕ is idempotent element, we denote by

Fϕ(X) := {f ∈ F(X) : f ⊕ ϕ = ϕ⊕ f = f}

the monoid having the identity element ϕ and by Lip1ϕ(X) the following set

Lip1ϕ(X) :=
{
f ∈ F(X) : f(x)− f(y) ≤ ϕ(xy−1);∀x, y ∈ X

}
.

If M is a monoid having ϕ as identity element, we denote by U(M) the group of unit

of M i.e U(M) := {f ∈M/∃g ∈M : f ⊕ g = g ⊕ f = ϕ}.

Proposition 7 Let X be a group. Then the following assertions hold,

(1) The following map is an isometri isomorphism of semigroups

π : (F(X),⊕, d) → (F0(X)× R,⊕, d1)

f 7→ (f − inf
X
f, inf

X
f).

(2) Let ϕ ∈ F(X) be a remarkable idempotent. Then

(i) Lip1ϕ(X) = Fϕ(X) and (Lip1ϕ(X),⊕, d) ∼= (Lip10,ϕ(X)×R,⊕, d1) as monoids.

(ii) (U(Lip1ϕ(X)),⊕, d) ∼= (U(Lip10,ϕ(X))× R,⊕, d1) as groups.

Proof. The part (1) is easy to verify. The part (2) follows from the fat that the

isomorphism π send the monoid Fϕ(X) on the monoid F0,ϕ(X) × R and the fat that

F0,ϕ(X) = Lip10,ϕ(X) by Lemma 3. Note also that f ∈ Lip1ϕ(X) if and only if f infX f ∈

Lip10,ϕ(X).
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4.2 The main algebrai result: the group of unit.

Let us proof now our �rst main algebrai result announed in the introdution. A. The

monoid Lip10,ϕ(X).

Theorem 6 Let ϕ ∈ F(X) a remarkable idempotent. Then the following assertions

hold.

(1) U(Lip10,ϕ(X)) = χ−1 ◦ γϕ
X
(X). Where χ is the isometri isomorphism of Lemma 4

and γϕ
X

is the isometri isomorphism of Lemma 6 applied to (X,∆∞,ϕ) = (X,∆∞,ϕ).

(2) (U(Lip10,ϕ(X)), d) ∼= (X,
∆∞,ϕ

1+∆∞,ϕ
) as groups.

(3) (U(Lip10,ϕ(X)), d∞) ∼= (X,∆∞,ϕ) as groups.

Proof. (1) By using Lemma 4 we have that χ(U(Lip10,ϕ(X))) = U(Lip10,ϕ(X)) and by

using Lemma 6 we have that γϕ
X
(X) = Gϕ0 (X) so we need to prove that the group of

unit U(Lip10,ϕ(X)) of Lip10,ϕ(X) oinide with Gϕ0 (X).

(∗) Gϕ0 (X) ⊂ U(Lip10,ϕ(X)) : this inlusion is lear sine we now from Lemma 6 that

Gϕ0 (X) is a group having ϕ as identity element.

(∗∗) U(Lip10,ϕ(X)) ⊂ Gϕ0 (X) : let f ∈ U(Lip10,ϕ(X)), there exists g ∈ U(Lip10,ϕ(X))

suh that f ⊕ g = ϕ. Let us prove that the map x 7→ ϕ(x) + ϕ(x−1) has a stong

minimum at eX on (X,∆∞,ϕ) = (X,∆∞,ϕ). Indeed, sine ϕ is remarkable idempotent

then ϕ ≥ 0 = ϕ(eX) = ϕ(e−1
X ) and so x 7→ ϕ(x)+ϕ(x−1) has a minimum at eX . On the

other hand∆∞,ϕ(x, eX) = max(ϕ(x), ϕ(x−1)) ≤ ϕ(x)+ϕ(x−1). Now, ϕ(xn)+ϕ(x
−1
n ) →

0 ⇒ ∆∞,ϕ(xn, eX). Thus, the map x 7→ ϕ(x) +ϕ(x−1) has a strong minimum at eX on

the omplet metri invariant group (X,∆∞,ϕ). Sine ϕ = f ⊕ g and sine f and g are

lower semi ontinuous (in fat 1-Lipshitz on (X,∆∞,ϕ)), then we an apply Theorem

5 to obtain some z0 ∈ X suh that f(x) ≥ ϕ(xz0)+ f(z−1
0 ) for all x ∈ X. On the other

hand sine f ∈ Lip10,ϕ(X), then we have f(x) ≤ ϕ(xz0) + f(z−1
0 ) for all x ∈ X . Thus

f(x) = ϕ(xz0)+ f(z−1
0 ) for all x ∈ X. Now sine infX f = 0 = infX ϕ then f(z−1

0 ) = 0.

Finally, we have f(x) = ϕ(xz0) = δϕ
z0−1(x) for all x ∈ X i.e f ∈ Gϕ0 (X).

The part (2) and (3) are just interpretations of the part (1) with the fat that d = d∞
1+d∞

on Gϕ0 (X) by Lemma 5 sine d∞ is �nite on this group by Lemma 6 .

B. Abstrat monoid Mϕ(X).

De�nition 4 Let S be a subset of , we say that S satisfy the translation property (T )
if the following property hold :

(T ) The maps x 7→ f(zx) and x 7→ f(xz) belongs to Mϕ(X) for all f ∈Mϕ(X) and all

z ∈ X.

Proposition 8 Let ϕ ∈ F(X) be a remarkable idempotent. Let Mϕ(X) be an abstrat

monoid of F0(X) having ϕ as identity element. Then

(1) the group of unit (U(Mϕ(X)), d) ofMϕ(X) is isometrially isomorphi to a subgroup

G of (X,
∆∞,ϕ

1+∆∞,ϕ
).
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(2) If Mϕ(X) satisfy the property (T ), then (U(Mϕ(X)), d) is isometrially isomorphi

to a subgroup of G suh that X ⊂ G ⊂ X.

(3) If the group X is omplete for the metri ∆∞,ϕ and Mϕ(X) satisfy the property (T )

then U(Mϕ(X)), d) = (Gϕ0 (X), d) is isometrially isomorphi to (X,
∆∞,ϕ

1+∆∞,ϕ
).

Proof. (1) We haveMϕ(X) ⊂ F0,ϕ = Lip0,ϕ(X). So U(Mϕ(X)) ⊂ U(Lip0,ϕ(X)) whih
is isometrially isomorphi to X by Theorem 6. So the onlusion.

(2) IfMϕ(X) satisfy the property (T ) then Gϕ0 (X) ⊂ U(Mϕ(X)) sine Gϕ0 (X) is a group
inluded in Mϕ(X). On the other hand Gϕ0 (X) is isometrially isomorphi to X by

Lemma 6. This gives the onlusion with the part (1).

(3) The onlusion follow from the part (2) sine X = X in this ase.

Corollary 5 Let (X,m) be omplete metri invariant group. Let M be an abstrat

submonoid of the monoid Lip10(X) satisfying the translation property (T ) Then the group

of unit (U(M), d) is isometrially isomorphi to (X, m
1+m

). This show that all submonoid

M of Lip10(X) satis�ng the property (T ), have the same group of unit.

Proof. The proof follow from the part (3) of Proposition 8 sine in this ase ϕ = ϕm :
x 7→ m(x, eX) and (X,m) = (X,∆∞,ϕm) is omplete.

5 Appliations to the Banah-Stone theorem.

Let us prove now our version of the Banah-Stone theorem whih states that the stru-

ture of the monoid (Lip10,ϕ(X),⊕, d) ompletely determine the struture of the metri

invariant group ompletion (X,∆∞,ϕ) when ϕ is remarkable idempotent and symmetri.

Theorem 7 Let X and Y be tow groups and let ϕ ∈ F(X) and ψ ∈ F(Y ) be two

remarkable idempotents. Then (1) ⇒ (2) ⇒ (3) ⇔ (4) ⇒ (5) ⇒ (6). If moreover we

assume that ϕ and ψ are symetri (i.e ϕ(x) = ϕ(x−1) and ψ(y) = ψ(y−1) for all x ∈ X
and all y ∈ Y ), then (1) − (6) are equivalent.

(1) There exist a group isomorphism T : X → Y suh that ψ ◦ T = ϕ.

(2) There exist a semigroup isomorphism isometri Φ : F(X) → F(Y ) sush that Φ(0) =
0 and Φ(ϕ) = ψ.

(3) There exist a semigroup isomorphism isometri Φ : F0(X) → F0(Y ) sush that

Φ(ϕ) = ψ.

(4) (Lip10,ϕ(X), d) ∼= (Lip1
0,ψ

(Y ), d) as monoids.

(5) (Lip10,ϕ(X), d) ∼= (Lip1
0,ψ(Y ), d) as monoids.

(6) (X,∆∞,ϕ) ∼= (Y ,∆∞,ψ) as groups.

Proof. Note that we have (X,∆∞,ϕ) =(X,∆∞,ϕ).

(1) ⇒ (2) If T : X → Y is an isomorphism suh that ψ ◦ T = ϕ then the map

Φ : F(X) → F(Y ) de�ned by Φ(f) = f ◦ T−1
is a semigroup isomorphism, isometri

for the metri d and satisfy Φ(ϕ) = ψ and Φ(0) = 0.
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(2) ⇒(3)SinceΦ is a semigroup isomorphism that Φ(0 ⊕ f) = Φ(0) ⊕ Φ(f) for all f ∈
F(X). Sine Φ(0) = 0 and 0⊕ f = infX f , then we obtain that Φ(infX f) = infY Φ(f)
for all ∈ F(X). In partiular, 0 = Φ(0) = infY Φ(f) for all f ∈ F0(X), this show that

Φ send F0(X) on F0(Y ).

(3) ⇒ (4) Sine Φ(ϕ) = ψ and Φ is a semigroup isomorphism then learly Φ maps the

monoid F0,ϕ(X) onto the monoid F
0,ψ(Y ). So using the fat that F0,ϕ(X) = Lip10,ϕ(X)

and F
0,ψ(Y ) = Lip1

0,ψ
(Y ) by Lemma 3, we obtain that (Lip10,ϕ(X), d) ∼= (Lip1

0,ψ
(Y ), d)

as monoids by Φ.

(4) ⇔ (5) Follows from Lemma 4.

(5) ⇒ (6) Sine (Lip10,ϕ(X), d) ∼= (Lip10,ψ(Y ), d) and sine isomorphism of monoids send

the group of unit on the group of unit, we have U(Lip10,ϕ(X)) ∼= U(Lip10,ϕ(Y )). Using

Theorem 6 we obtain that (X,∆∞,ϕ) ∼= (Y ,∆∞,ψ).

Suppose now that ϕ and ψ are symmetri, then

∆∞,ϕ(x, eX) = ∆∞,ϕ(x, eX) = max(ϕ(x), ϕ(x−1) = ϕ(x)

for all x ∈ X and ∆∞,ψ(y, eY ) = ∆∞,ψ(y, eY ) = ψ(y) for all y ∈ Y . We need to prove

that (6) ⇒ (1). Indeed, Let T : (X,∆∞,ϕ) → (Y ,∆∞,ψ) be an isomorphism isometri.

In partiular we have

ψ(T (x)) = ∆∞,ψ(T (x), eY )

= ∆∞,ψ(T (x), T (eX ))

= ∆∞,ϕ(x, eX )

= ϕ(x).

This onlude the proof.

The following orollary shows that the monoid (Lip10(X),⊕, d) ompletely determine

the struture of the omplete metri invariant group (X,m).

Corollary 6 Let (X,m) and (Y,m′) be omplete metri invariant groups. Let ϕm :
x 7→ m(x, eX) for all x ∈ X and ψm′ : y 7→ m′(y, eY ) for all y ∈ Y . Then, the following
assertions are equivalent.

(1) (X,m) ∼= (Y,m′) as groups.

(2) There exist a semigroup isomorphism isometri Φ : F(X) → F(Y ) sush that

Φ(ϕm) = ψm′
and Φ(0) = 0.

(3) There exist a semigroup isomorphism isometri Φ : F0(X) → F0(Y ) sush that

Φ(ϕm) = ψm′
.

(4) (Lip10(X), d) ∼= (Lip10(Y ), d) as monoids.

(5) There exist a semigroup isomorphism isometri Φ : (Lip0(X), d) → (Lip0(Y ), d)
sush that Φ(ϕm) = ψm′

.

Proof. The part (1) ⇔ (2) ⇔ (3) ⇔ (4) follow from Theorem 7 and the fat that (X,m)
and (Y,m′) are omplete, and that Lip10(X) = Lip10,ϕm

(X) with ϕm : x 7→ m(x, eX).
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On the other hand, the part (1) ⇒ (5) is lear and the part (5) ⇒ (4) follow from

the fat that Lip10(X) = F0,ϕm(X), Lip10(X) = F0,ϕm′
(Y ) and the fat that Φ send

neessarily the monoid F0,ϕm(X) on the monoid F0,ϕm′
(Y ).

Now we give the purely algebrai version of the above orollary. We denote by

F1
0 (X) the monoid of all funtions f : X → [0, 1] suh that infX f = 0. This monoid

has the identity element, the map

δeX =

{
0 if x = eX
1 otherwise.

Corollary 7 Let X and Y be two groups. Then the following assertions are equivalent.

(1) (F1
0 (X),⊕, d) is isometrially isomorphi to (F1

0 (Y ),⊕, d) as monoids (also as semi-

groups).

(2) (F1
0 (X),⊕) is isomorphi to (F1

0 (Y ),⊕) as monoids (also as semigroups).

(3) X and Y are isomorphi as groups.

Proof. First, note that the group X ( and in similar way the group Y ) an be endowed

with the disrete metri denoted by dis. So we have that (X, dis) is a omplete metri

invariant group. Then, we see easily that with this metri we have F1
0 (X) = Lip10(X).

On the other hand we have that X and Y are isomorphi if and only if (X, dis) and
(Y, dis) are isometrially isomorphi, this implies by Corollary 6 that (F1

0 (X), d) and

(F1
0 (Y ), d) are isometrially isomorphi as monoids, in partiular they are isomorphi.

For the onverse, if F1
0 (X) and F1

0 (Y ) are isomorphi as monoids, then the group of

unit of F1
0 (X) is isomorphi to the group of unit of F1

0 (Y ). Thus, by Theorem 6 (Or

Corollary 7) we obtain that X and Y are isomorphi.

6 Appliation to the Banah-Dieudonée Theorem.

Let us reall some notions. Let K and C be onvex subsets of vetor spaes. A funtion

T : K → C is said to be a�ne if for all x, y ∈ K and 0 ≤ λ ≤ 1, T (λx + (1 − λ)y) =
λT (x) + (1− λ)T (y). The set of all ontinuous real-valued a�ne funtions on a onvex

subset K of a topologial vetor spae will be denoted by Aff(K). We denote by

Aff0(BX∗) the set of all a�ne weak star ontinuous funtions that vanish at 0. Clearly,
all translates of ontinuous linear funtionals are elements of A�(K), but the onverse
in not true in general (see [9℄ page 21.). However, we do have the following relationship.

Proposition 9 ([9℄, Proposition 4.5) Assume that K is a ompat onvex subset of a

separated loally onvex spae X then

{
a ∈ Aff(K) : a = r + x∗|K for some x∗ ∈ X∗ and some r ∈ R

}

is dense in (Aff(K), ‖.‖∞).
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But in the partiular ase when X is a Banah spae and K = (BX∗ , w∗) is the unit
ball of the dual spae X∗

endowed with the weak star topologies, the well known result

due to Banah and Dieudonné states that :

Aff0(BX∗) =
{
ẑ|K : z ∈ X

}
.

Where ẑ : p 7→ p(z) for all p ∈ X∗
and ẑ|BX∗

denotes the restrition of ẑ to K. In

partiular (Aff0(BX∗), ‖.‖∞) is isometrially isomorphi to (X, ‖.‖).

We give in this setion a simple proof of the Banah-Dieudonné theorem by using

our algebrai results of this artile. More preisely, we us Theorem 6.

In what follow, K is a onvex bounded and weak-star losed set of X∗
ongaing 0

suh that int(K) 6= ∅ where int(K) denote the interior of K for the norm topology.

We denote by A(X∗) the set of all funtions F : X∗ → R ∪ {+∞} onvex weak-star

lower semiontinuous with non empty domain. We denote by iK the indiator funtion

iK(x) = 0 if x ∈ K and +∞ otherwise and by AK(X
∗) := {F + iK : F ∈ A(X∗)} whih

is a monoid for the operation + and having the funtion iK as identity element. We

also denote A(K) the set of all funtions F : K → R ∪ {+∞} onvex weak-star lower

semiontinuous on K, whih is a monoid having 0 as identity element. Clearly, the map

i : (A(K),+) → (AK(X
∗),+)

F 7→ F̃ + iK .

is a monoid isomorphism, where F̃ := F on K and +∞ otherwise.

Finally by T we denote the Fenhel-Moreau operator i.e T (f) = f∗ where f∗(p) :=
supx∈X {p(x)− f(x)} for all p ∈ X∗

and by σK : x 7→ supp∈K {p(x)} the support fun-

tion. It is well known that the inf-onvolution of two onvex funtion is also onvex

funtion and that (f ⊕ g)∗ = f∗ + g∗ is always true.

For the inf-onvolution struture, we deal with the partiular semigroup CL0(X) of
all onvex map f de�ned on a Banah spae X suh that infX f = 0 and the submonoid

MσK (X) := CL0(X) ∩ Lip0,σK (X) of the monoid (Lip0,σK (X),⊕) where σK : x 7→
supp∈K {p(x)} denotes the support funtion whih is a remarkable idempotent (see the

proposition bellow). We reall below the well know Fenhel-Moreau theorem.

Theorem 8 (Fenhel-Moreau) Let X be a Banah spae and f be a funtion de�ned

on X suh that {x ∈ X : f(x) < +∞} 6= ∅. Then, f is onvexe lower semi ontinuous

if and only if f∗∗(x) = f(x) for all x ∈ X.

Proposition 10 Let K be a onvex bounded and weak-star losed set of X∗
suh that

int(K) 6= ∅. Then

(1) The support funtion σK is remarkable idempotent of MσK (X) and is Lipshitz on

(X, ‖.‖).

(2) For eah �xed point z ∈ X, we have (σK(. − z))∗ = ẑ + iK , where ẑ : p 7→ p(z) for
all p ∈ X∗

.
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(3) U(MσK (X)) = GσK0 (X) := {σK(.− z) : z ∈ X}.

(4) U(A(K)) = Aff0(K) = i−1(U(AK(X
∗)))

Proof. (1) We know that σK is subadditive, so from Proposition 6 it su�es to prove

that σK(x) = σK(−x) = 0 if and only if x = 0 whih is lear sine int(K) 6= ∅. Sine

K is bounded set then σK is Lipshitz on (X, ‖.‖).

(2) This part is well known and an be easily veri�ed.

(3) Sine MσK (X) is stable by the translation property (T ) (See De�nition 4) then, by

Proposition 8 we have U(MσK (X)) = GσK0 (X) := {σK(.− z) : z ∈ X} sine (X,∆∞,σK )
is omplete. In fat here ∆∞,σK (x, y) = supp∈K |p(x − y)| is equivalent to the metri

assoiated to the norm ‖.‖ sine K is bounded and int(K) 6= ∅.

(4) First we have U(A(K)) = AFF0(K). Indeed, let F ∈ U(A(K)) then there exists

G ∈ U(A(K)) suh that F +G = 0 i.e F = −G on K. Sine both F and G are onvex

weak-star lower semiontinuous on K then F (respativelly G) is a�ne and weak-star

ontinuous on K. Conversely, if F is a�ne and weak-star ontinuous then −F is a�ne

and weak-star ontinuous too and so F ∈ U(A(K)). A monoid isomorphism send the

group of unit on the group of unit so i(U(A(K))) = i(Aff0(K)) = U(AK(X
∗)).

Proposition 11 Let K be a onvex bounded and weak-star losed set of X∗
suh that

int(K) 6= ∅.

(2) The map

T : (MσK (X),⊕) → (AK(X∗),+)

f 7→ T (f)

is a monoid isomorphism. Consequently,

i−1 ◦ T : (MσK (X),⊕) → (A(K),+)

f 7→ i−1 ◦ T (f)

is a monoid isomorphism.

Proof. The injetivity of T follow from the Fenhel-Moreau theorem (see above)

sine every element of MσK (X) is onvex and Lipshitz. For the surjetivity, Let

F be weak-star lower semiontinuous and onvex funtion on X∗
. Let f : x 7→

supp∈K {p(x)− F (p)} = (F + iK)∗(x). Then f ∈ MσK (X) and F + iK = f∗ = T (f).
Indeed, f is bounded from below sine 0 ∈ K and infX f = 0 sine F (0) = 0. We

have that f is onvex and weak-star lower semiontinuous as supremum of a�ne and

weak-star ontinuous funtions. So f ∈ CL0(X). On the other hand f ∈ Lip0,σK (X)
as supremum of element in Lip0,σK (X), sine for eah �xed p ∈ K we have (p(x) −
F (p)) − (p(y) − F (p)) = p(x − y) ≤ σK(x − y) and we an take supremum in the

inequality (p(x)−F (p)) ≤ σK(x− y) + (p(y)−F (p)). Thus f ∈MσK (X). Now by the

Fenhel-Moreau theorem we have F + iK = (F + iK)∗∗ = f∗ sine F + iK is onvex

weak-star lower semiontinuous. So T is surjetive. Finally T is a morphism for the

inf-onvolution sine it is well know and easy to verify that (f ⊕ g)∗ = f∗ + g∗ for all

f, g ∈MσK (X). By omposition of isomorphism we obtain the seond a�rmation.

We give now the algebrai proof of the Banah-Dieudonée theorem.
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Theorem 9 (Banah-Dieudonée) Let K be a onvex bounded and weak-star losed

set of X∗
ontaining 0 suh that int(K) 6= ∅. Then

Aff0(K) =
{
ẑ|K : z ∈ X

}
.

If moreover K is symmetri then (Aff0(K), ‖.‖∞) is isometrially isomorphi to (X,σK).
In this ase σK is an equivalent norm on X.

Proof. Sine a monoid isomorphism send the group of unit on the group of unit,

then i−1 ◦ T (U(MσK (X))) = U(A(K)) by Proposition 11. The onlusion follow from

Proposition 10.

We give as orollary the following well known result.

Corollary 8 [[4℄, Theorem 55℄ Let F ∈ X∗∗
(the bidual of X). Suppose that F is

weak-star ontinuous. Then there exists x ∈ X suh that F = x̂.

Proof. The restrition F|BX∗
is a�ne weak-star ontinuous on BX∗

. So applying The-

orem 9 with K = BX∗
, there exists x ∈ X suh that F|BX∗

= x̂|BX∗
. By homogeneity

we have F = x̂.
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