Remarks on Isometries of Products of Linear Spaces
Abstract
Given two normed spaces $X$ , $Y$ , the aim of this paper is establish that the existence of an isomorphism isometric between $ X \times R $ and $ Y \times R$ is equivalent to the existence of an isometric isomorphism between $X$ and $Y$ , provided the norms satisfy an appropriate condition. By means of a counterexample, it is shown that this result fails for arbitrary norms even if $X = Y = R^2$.