Remarks on Isometries of Products of Linear Spaces

Mohammed Bachir 1
1 Equations d'evolution
SAMM - Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne)
Abstract : Given two normed spaces $X$ , $Y$ , the aim of this paper is establish that the existence of an isomorphism isometric between $ X \times R $ and $ Y \times R$ is equivalent to the existence of an isometric isomorphism between $X$ and $Y$ , provided the norms satisfy an appropriate condition. By means of a counterexample, it is shown that this result fails for arbitrary norms even if $X = Y = R^2$.
Document type :
Journal articles
Complete list of metadatas

https://hal-paris1.archives-ouvertes.fr/hal-01183199
Contributor : Mohammed Bachir <>
Submitted on : Thursday, August 6, 2015 - 4:33:26 PM
Last modification on : Monday, November 27, 2017 - 2:14:02 PM

Identifiers

  • HAL Id : hal-01183199, version 1

Collections

Citation

Mohammed Bachir. Remarks on Isometries of Products of Linear Spaces. Extracta Mathematicae, 2015, 30 (1), pp.1-13. ⟨hal-01183199⟩

Share

Metrics

Record views

309