On the Composition of Differentiable Functions - Université Paris 1 Panthéon-Sorbonne Access content directly
Journal Articles Canad. Math. Bull Year : 2003

On the Composition of Differentiable Functions

Mohammed Bachir
  • Function : Author
  • PersonId : 960537

Abstract

We prove that a Banach space $X$ has the Schur property if and only if every $X$-valued weakly differentiable function is Fr´echet differentiable. We give a general result on the Fr´echet differentiability of $f \circ T$, where $ f $ is a Lipschitz function and $T $ is a compact linear operator. Finally we study, using in particular a smooth variational principle, the differentiability of the semi norm $\|.\|_{lip}$ on various spaces of Lipschitz functions.
Not file

Dates and versions

hal-01183277 , version 1 (07-08-2015)

Identifiers

  • HAL Id : hal-01183277 , version 1

Cite

Mohammed Bachir, Gilles Lancien. On the Composition of Differentiable Functions. Canad. Math. Bull, 2003, 46 (4), pp.481-494. ⟨hal-01183277⟩
125 View
0 Download

Share

Gmail Facebook Twitter LinkedIn More