On the Composition of Differentiable Functions

Mohammed Bachir 1 Gilles Lancien 2
1 Equations d'evolution
SAMM - Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne)
Abstract : We prove that a Banach space $X$ has the Schur property if and only if every $X$-valued weakly differentiable function is Fr´echet differentiable. We give a general result on the Fr´echet differentiability of $f \circ T$, where $ f $ is a Lipschitz function and $T $ is a compact linear operator. Finally we study, using in particular a smooth variational principle, the differentiability of the semi norm $\|.\|_{lip}$ on various spaces of Lipschitz functions.
Type de document :
Article dans une revue
Canad. Math. Bull, 2003, 46 (4), pp.481-494
Liste complète des métadonnées

https://hal-paris1.archives-ouvertes.fr/hal-01183277
Contributeur : Mohammed Bachir <>
Soumis le : vendredi 7 août 2015 - 00:02:42
Dernière modification le : vendredi 6 juillet 2018 - 15:18:04

Identifiants

  • HAL Id : hal-01183277, version 1

Collections

Citation

Mohammed Bachir, Gilles Lancien. On the Composition of Differentiable Functions. Canad. Math. Bull, 2003, 46 (4), pp.481-494. 〈hal-01183277〉

Partager

Métriques

Consultations de la notice

215