Skip to Main content Skip to Navigation
Journal articles

A dual characterisation of the Radon-Nikodym property

Mohammed Bachir 1 Aris Daniilidis 2
1 Equations d'evolution
SAMM - Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne)
Abstract : We prove that a Banach space $X$ has the Radon-Nikodym property if, and only if, every weak*-lower semicontinuous convex continuous function $f $ of $X^*$ is Gâteaux differentiable at some point of its domain with derivative in the predual space $X$.
Document type :
Journal articles
Complete list of metadata
Contributor : Mohammed Bachir Connect in order to contact the contributor
Submitted on : Friday, August 7, 2015 - 12:28:32 AM
Last modification on : Wednesday, January 26, 2022 - 3:10:52 PM


  • HAL Id : hal-01183280, version 1



Mohammed Bachir, Aris Daniilidis. A dual characterisation of the Radon-Nikodym property. Bulletin of the Australian Mathematical Society, John Loxton University of Western Sydney|Australia 2000, 62, pp.379-387. ⟨hal-01183280⟩



Les métriques sont temporairement indisponibles