
HAL Id: hal-01214172
https://paris1.hal.science/hal-01214172

Submitted on 14 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Runtime Requirements Monitoring Framework for
Adaptive e-Learning Systems

Lamiae Dounas, Raul Mazo, Camille Salinesi, Omar El Beqqali

To cite this version:
Lamiae Dounas, Raul Mazo, Camille Salinesi, Omar El Beqqali. Runtime Requirements Monitor-
ing Framework for Adaptive e-Learning Systems. International Conference on Software & Systems
Engineering and their Applications (ICSSEA’15), May 2015, Paris, France. �hal-01214172�

https://paris1.hal.science/hal-01214172
https://hal.archives-ouvertes.fr

ICSSEA 2015- 8 DOUNAS

1

Runtime Requirements Monitoring Framework for Adaptive e-Learning
Systems

1, 2
Lamiae DOUNAS,

1
Raul MAZO,

1,3
Juan C. MUÑOZ-FERNÁNDEZ,

1
Camille SALINESI,

2
Omar EL

BEQQALI
1CRI, University Paris 1 Panthéon-Sorbonne, Paris, France

2
LIAAN, Faculty of Sciences Dhar el Mehraz USMBA, Fez , Morocco

3
I2T/DRISO, Facultad de Ingeniería, Universidad Icesi, Cali, Colombia

lamiae.bourkiza@malix.univ-paris1.fr;{raul.mazo, camille.salinesi}@univ-paris1.fr;

jcmunoz@icesi.edu.co; omar.beqqali@usmba.ac.ma

Abstract: As academic learners and companies are turning to e-learning courses to achieve their personal and

professional goals, it becomes more and more important to handle service quality in this sector. Despite

scientific research conducted to personalize the learning process and meet learner's requirements under

adaptive e-learning systems, however, the specification and management of quality attribute is particularly

challenging due to problems arising from environmental variability. In our view, a detailed and high-level

specification of requirements supported through the whole system lifecycle is needed for a comprehensive

management of adaptive e-learning systems, especially in continuously changing environmental conditions.

In this paper, we propose a runtime requirements monitoring to check the conformity of adaptive e-learning

systems to their requirements and ensure that the activities offered by these learning environments can

achieve the desired learning outcomes. As a result, when deviations (i.e., not satisfied requirements) occur,

they are identified and then notified during system operation. With our approach, the requirements are

supported during the whole system lifecycle. First, we specify system's requirements in the form of a dynamic

software product line. This specification applies a novel requirements engineering language that combines

goal-driven requirements with features and claims and avoid the enumeration of all desired adaptation

strategies (i.e. when an adaptation should be applied) at the design time. Second, the specification is

automatically transformed into a constraint satisfaction problem that reduces the requirements monitoring into

a constraint program at runtime.

Keywords: Requirements monitoring, adaptive e-learning systems, constraint programming, dynamic software product

lines, goal modelling.

1 INTRODUCTION

E-learning, also known as online learning or technology-enhanced learning is expected to make a radical

difference to education, specifically, the quality and effectiveness of learning experience [1]. In recent years, e-

learning systems have gained in popularity among academic and companies; the global e-learning market is

expected to reach USD 107 billion by 2015 as reported by the Global Industry Analysts, Inc. Therefore, it

becomes more and more important to handle service quality of this sector.

Among the existing technologies enhanced learning, adaptive e-learning systems have arisen as an

alternative to traditional "one size fits all" learning approach that provides the same content for all learners

regardless of their cultural diversity or how they learn[2][3]. On the one hand, some studies have attempted to

provide personalized contents and navigation support for each learner, based on several characteristics of

learners including knowledge level, goals, learning style or personal preferences [4-12]. On the other hand,

others studies have stressed technical aspects including learning standards like AICC, IMS, SCORM, and

LOM, to give flexibility to learning systems, in term of contents as well as in structure.

As we move into a new era of dynamic adaptation, more attention is needed to support the requirements of

adaptive e-learning systems and allow their evolution at runtime. So far, the main used approach to model

adaptation is the design time enumeration of all desired adaptation strategies, on every context. But, this is

clearly a fastidious and cumbersome task due to the number of decisions needed, considering continuously

changing environmental conditions (e.g., learner engagement, learner location, device status, and network

connectivity). Moreover, some requirements or features of the environment may be unknown at design time

which may limit the system self-awareness [13] and reduce guarantee that adaptation strategies will remain

2

adequate during the system operation. Finally, the lack of rigorous evaluation of adaptive e-learning systems is

another important issue. This because, it is hard to specify control conditions once the system is build and

attributes cause ([14] [15] [16]).

In order to overcome the issues mentioned above, we propose a runtime requirements monitoring

framework to guide the evolution of adaptive e-learning systems. This framework continuously checks the

conformity of an adaptive e-learning system to its requirements and informs the system whenever it detects a

deviation. The requirements specification is inspired from Sawyer et al.’s approach [17] that consists in

specifying and transforming an extended goal-driven requirements model into a constraint program.

Accordingly, we use its evolution, called REFAS [18] (Requirements for (Self-) Adaptive Systems), a language

to specify the requirements in the form of dynamic software product line specification combined with claims.

Afterward, the specification is automatically transformed into a constraint satisfaction problem that reduces the

requirements monitoring into a constraint program (CP).

The rest of the paper is organized as follows. Section 2 presents background information about materials

used throughout the paper. Section 3 presents our approach. First, we introduce an adaptive e-learning system

that will be used as a running example, and then we describe the proposed requirements monitoring

architecture. Section 4 describes the application of the approach to the running example and how the

monitoring requirements detect deviations and plan optimal configurations using a constraint program. Section

5 discusses related work. And finally Section 6 concludes and presents future work.

2 BACKGROUND

The main objective of our requirements monitoring framework is to check the satisfaction of learning
requirements at runtime. This implies to be able to specify the requirements of the adaptive e-learning systems
and be aware of changes in their environments at the same time. Therefore, we are particularly interested in
establishing relationships among three key elements:

 Learning materials
 Learning requirements
 Assumptions about the environment
A simple way to do would be the design time enumeration of all possible instances of these elements and

the relationship between them in a declarative statement. However, this statement can miss some unknown

requirements of the operational environment, and it would also produce a tangled design. In contrast, we

propose a much convenient way that uses a detailed and high-level requirements specification and supports the

monitoring in the whole system lifecycle.

2. 1 REFAS language
REFAS language is a novel requirements engineering language that seeks to manage uncertainty and to be

sufficiently expressive for self-adaptive systems. It allows the representation of all relevant concepts in

different views [18]. From these views, we are interested in the following four views that conform with our

requirements model:
 Variability view: represents system requirements (functional requirements) as goals. The top-level goal

should state the overall objective of the system. This goal is decomposed then in several sub-goals
(AND/OR-refinement) and the process of refinement ends when the leaf goals can be operationalized
(i.e. solved by an operation or components). A goal may have several operationalization goals, which
represents system's architectural variability. The decision about the satisfiability of selected
configuration is reported at runtime to ensure acceptable behaviour under the current context.

 Soft goals view: represents system's non-functional requirements as soft goals.
 Context view: defines the context variables that impact the learning process and relation between these

variables.
 Soft goals satisficing view: represents assumptions about the context and their implication over the soft

goals satisfaction. The view specifies soft-dependencies to express required levels of soft goal
satisfaction for condition based on context values, and claims to indicate satisfaction level of soft goals
expected from a combination of operationalization goals.
Note that, the levels of satisfaction can be expressed from a set of values {0, 1, 2, 3, 4} ranging from
complete denial (0) to complete satisfaction (4).

3

2. 2 VariaMos Tool

VariaMos (Variability Models) is a Java-based tool for specification, automatic verification, analysis,
configuration, integration and simulation of variability models [19].It offers an automatic transformation of
requirements specifications of self-adaptive systems into a high-level constraint program [20], and then
compiled into the language of the solver at hand to execute the resulting model. In this paper, it is used to
implement REFAS requirements model, realize simulations about how the goals can be reached, and the soft
goals can be satisfied, and transform the model into constraint program. More details about the tool can be
found online

1
.

3 MODELING APPROACH

3.1 Running example

To support discussion about the need for continuous requirements monitoring at runtime for adaptive e-

learning systems, we apply our approach to an adaptive e-learning system proposed by Franzoni et al. [21]. The

system aims to adapt the presentation of course materials (text, graphics, video, audio, forum, etc.) to each

learner based on his learning style and encourage collaborative learning.

The learning style is defined using the Felder & Silverman model [22] that classifies a learner under four

dimensions: sensing/intuitive, visual/verbal, active/reflective and sequential/global. Then, the learning style and

teaching strategies are matched based on the following taxonomy:

 Sensitive learners prefer facts, data and experimentation (laboratory exercises, problem-solving), they

are patient with details but don't like complication. Whereas intuitive learners prefer theories and

principles, they get bored with details and accept complication.

 Visual learners remember the things they see. The information gathering must use visual representations

(images, graphics, and text). Whereas verbal learners remember the things they have heard. The

learning content must have a lot of oral representation (video, audio).

 Active learners tend to apprehend and assimilate new information when they practice and work with

others (discussion, chat, and forum). Whereas reflective learners think about information quietly, before

go ahead and stop periodically to review what have been learned. The learning content must be related

to with experience (question and answer methods, case study).

 Sequential learners learn through small orderly steps (chapters, daily homework). Whereas, global

learners learn through big steps and prefer to see everything as a whole (Project, case study).

To extend our running example, we assume the system stimulates collaborative learning by managing two

groups namely, an online group and a physical self-help group. Learners living in the same geographical space

can use a physical self-help group. So they can have face-to-face meetings as well as online meetings with this

group.

Now, let us describe a scenario we expect the need for requirements monitoring at runtime:

According to Felder & Silverman, the system knows what appropriate presentation of courses materials for

a learner. However, there are some ignored driving characteristics to be considered when proposing course

materials like network connection speed, bitrate and learner's preferences. For example, for a video lecture, the

system need to consider bandwidth measurements and deliver the video file in different quality or when the

bandwidth is too low, ask learners if they prefer textual presentation. In this scenario, the impact of the event of

bandwidth was not anticipated at design time. Moreover, the system needs to work with learners, at runtime, to

find relevant presentation of course materials in each context and avoid high waiting time.

3.2 Runtime requirements monitoring framework for adaptive e-learning

systems

The requirements monitoring framework is performed in two stages:
 At design time, as shown in Figure1, the administrator of the system elucidates the business goals and

the requirements (non-functional requirements) to be monitored. The designer builds then the requirements
model using REFAS language and specifies soft-dependencies and claims. Finally, the model is transformed

1
http://variamos.com/

4

into a constraint satisfaction problem where the goals, soft-goals, operationalization goals and context variables
are mapped as variables and the claims and soft-dependencies as constraints.

At this stage, our approach aims to facilitate the requirements specification and verify the requirements
model using simulations under a graphical tool, namely VariaMos.

 At runtime: the requirements monitoring is reduced to a constraint program that verify the satisfaction

of requirements and find optimal configurations that satisfy all constraints using the generated constraint

satisfaction problem (CSP) from the design time stage.

As illustrated in Figure 2, our requirements monitoring is implemented as an autonomic computing MAPE

(monitor-analyze-plan-execute) loop architecture [23] under adaptive e-learning system:

In the upper part of Figure 2 shown, a typical architecture of adaptive e-learning that is organized in the

form of three basic models: the student model represents information about learners. This information can be

gathered from questionnaires or dynamically from log files which give a complete description of the current

Changes

Deviation

Find alternative
configurations that
satisfy our CSP with
free operationalization
goals under the current
context.

Plan

Execute
alert
function

Execute

Monitor context
variables and system's
configuration.

Monitor

Analyze CSP to check
requirements
satisfaction under the
changes conditions.

Analyze

S
en

so
rs

Figure 2: Runtime Requirements monitoring framework of adaptive e-learning systems

Requirements Monitoring

Learning

materials

repository

Questionnaires

Log files

Scores

Adaptation Model

Domain

Model

Student

Model

Adaptive e-learning system

If alternative configurations exist

Figure 1: Requirements monitoring at design time

Designer

ADMIN

Requirements

elicitation

Assomptions

about environment

CSP

Engine

Requirements model CSP

VariaMos tool

External

context

5

state of each learner. The domain model structures knowledge about the domain to be learned, by describing the

relationship between different concepts of the learning domain. And adaptation model implements the

specification of adaptation rules to fit the learning materials to learners.
In the lower part of Figure 2 shown the MAPE loop control that continuously checks the satisfaction of

learning requirements through four stages:
The first stage of the MAPE loop involves monitoring both:

1) System's context (or the external environment) by means of sensors. For example, the monitoring can

use GPS to track learners and detect change in their geographical location.

2) Configuration (i.e. the whole operationalization goals used by the system) using log files from running

instances of the system.

The current state information about managed elements is then stored in a data file and updated

progressively to reason about. In this respect, when the monitoring identifies changes, the analysis stage is

intended to verify the impact of the changes on learning requirements satisfaction by executing our constraint

program using the values in the data file from the first stage. And if e-learning system is not providing the

required satisfaction level, it triggers the next stage.

The planning stage is then employed to find optimal configurations of operationalization goals according to

the values of the current context from the data file.

The executing stage alerts the system about deviations and presents a list of the available optimal

configurations.
Note that, our monitoring framework may identify new requirements and verify some variables values from

the system. For example, the monitoring may ask the system available representations of a typical course to
enable/disable some multimedia options (operationalization goals).

4 APPLICATION AND SIMULATIONS

4.1 Applying our approach to the running example

4.1.1 Requirements analysis

In the running example, the aim is to promote the learning process by adapting the representation of

learning materials to each learner based in learning style and supporting learner collaboration. Besides these

functional requirements, the administrator of the system provides additional non-functional requirements. The

focus herein is to list the overall requirements and describe the relation between these requirements and

assumptions about the operational environment:

R0 : Learners should have learning materials that fit their learning styles.

In our view, monitoring this 'hard' requirement is not important and would be redundant, since our monitoring

would likely not be able any more effective that the system itself. The remaining 'soft' requirements are then

supported by the requirements model.

R1 : Learners should not have to wait unduly long for loading learning materials.

The monitoring framework shall consider network connectivity to identify relevant digital contents

representations (video, graphics and audio, or text). For example, a learner can connect over a low bandwidth

modem line, if the system presents a heavy video lecture, the learner may wait unduly long for the transmission

of data. In this case, the monitoring should identify alternatives learning material based in their sizes to

optimize the waiting time.

R2 : The system should support collaborative learning and ensure a good match between collaborative

groups.

The monitoring framework shall track change in the geographical space and maintain the homogeneity of

collaborative groups. And if changes occur, inform the system, so it can update their groups.

R3 : The system should provide learners an accessible and available communication tools.

The monitoring framework shall monitor learners' access to the e-learning platform and detect relevant

communication tools for every learner depending of its frequency of access. For example, the system needs to

use SMS or Email for learners with low frequency to keep learners aware of what happening in the platform,

which might motivate them to connect and follow courses.

R4 : The system needs to support the accessibility to learning materials in different contexts.

The monitoring framework shall detect noisy environments and identify relevant auxiliary to multimedia like

caption and subtitle.

6

4.1.2 Requirements model

The requirements model of the running example is supported by the four aforementioned views of REFAS

language:

 Considering the variability view (see Figure 3), the root goal is PromoteLearningProcess which is

AND-refined into two sub-goals IndividualizeCourseMaterial and ProvideCommunicationService. The former

is AND-refined into two leaf goals OfferCommunicationTools and UpdateCollaborationGroup. And the latter

is OR-refined into two leaf goals IndividualizeMultimediaDelivery and SupportAuxiliaryMultimedia. Each leaf

goal has several operationalizations, for instance, OfferCommunicationTools goal can be operationalized using

Forum, Chat, InternalMail, SMS, or ExternalMail. In addition, the use of some operationalization can be

conditioned by constraints like require or exclude. This kind of constraints can considerably reduce the

configuration space at runtime. In our example, UseSubtitle/UseCaption and Video are related by required

relations, which means if subtitle or caption is activated, a video lecture must be selected.

 Considering the soft goals view (see Figure 4), the view supports five soft goals:

WaitingTimeOptimization, GroupHomogeneity, RelevantCommunication, InteractiveCommunication and

AccessibilityEnhancement. These soft goals represent the aforementioned 'soft' requirements {R1, R2, R3, R4}.

 Considering the context view (see Figure 5), the context variables that may affect the system include the

NetworkSpeed, GeographicalChangeSpace {true, false}, IsLongStay {true, false}, VideoBitRate {high, low},

AudioBitRate {high, low}, FrequencyOfUse {high, low} to the system and NoisyEnvironment {true, false}.

Note, that to avoid overloading the system, the monitoring supports GeographicChangeSpace only for long

stay (i.e., when duration of change exceeds 30 days). Thus, when a change in the geographical space of learner

is detected, the monitor informs the system, this latter, ask the learner to verify if he will stay more than 30

days and send feedback to the monitoring.

 Considering the soft goals satisficing view (see Figure 6), the view supports 13 claims and 4 soft-

dependencies. For instance, C8 indicates that using Text course fully satisfies WaitingTimeOptimization, and

SD4 indicates that when NetworkSpeed is low, the soft-goal WaitingTimeOptimization should be fully satisfied

(level 4).

Note that, the last view acts as a filter and permits the exclusion of non-relevant configurations by using the

claims and soft-dependencies to reason about soft-goals. The combination of the five SD defines 16 scenarios

of soft goal satisfaction. Within each scenario, the monitoring considers the variation of course materials and

learner preferences. Without the proper constraints on the soft goal satisficing view, the configuration space

grows exponentially. In our running example, each scenario has around 40 possible configurations.

ICSSEA 2015- 8 DOUNAS

7

Figure 3: Variability view

Figure 4: Soft goals view Figure 5: Soft goals view

Figure 6: Context view

8

Figure 7: Soft goals satisficing view

4.2 Simulations

The primary objective of our requirements monitoring is the detection of deviations. In the following, we

present two examples to illustrate how the requirements monitoring infrastructure dynamically detects a

satisfaction problem using the generated constraint satisfaction problem and plans optimal configurations.

Verbal Learner Example

Let us suppose that we have a verbal learner, i.e. she understands information more effectively by listening

to sounds and spoken words, according to Felder & Silverman [22]. Consequently, the system prefers to deliver

video lectures to this learner. Nevertheless, in this example video lectures are only available in high quality, i.e.

they require high bitrate. This example also has text lectures available.

The soft goals satisficing view defines two claims; these claims affect the expected level of the soft goal

WaitingTimeOptimization for the Video operationalization, as illustrated in Figure 6. The claims CL9 and CL13

require Video refined from the goal IndividualizeMultimediaDelivery. The soft goals satisficing view also

expresses, with soft dependency SD4, the required level of the soft goal WaitingTimeOptimization. The claims

and SD required in this example can be expressed in a simplified way as:

CL8_selected  Text_selected  Graphics_Selected

CL8_selected  WaitingTimeOptimization_ExpectedLevel = 4

CL9_selected  Video_selected  VideoBitRate = low

CL9_selected  WaitingTimeOptimization_ExpectedLevel = 1

CL13_selected  Video_selected  VideoBitRate = high

CL13_selected  WaitingTimeOptimization_ExpectedLevel = 4

9

SD4_selected  NetworkSpeed=low

SD4_selected  WaitingTimeOptimization_RequieredLevel = 4

Claim CL8 indicates the highly positive influence on the satisfaction of WaitingTimeOptimization (expected

level = 4) when the system delivers text or graphics. Claim CL9 indicates the highly positive influence on over

the satisfaction of WaitingTimeOptimization (expected level = 4) when the system delivers video, and the

VideoBitRate is low. Claim CL13 indicates the expected denial in the satisfaction of WaitingTimeOptimization

(expected level = 1) when the system delivers video, and the VideoBitRate is high.

Soft dependency SD1 specifies that if the NetworkSpeed connection is low then the waiting time

optimization should be fully satisfied.

In this example we consider two context scenarios, the first NetworkSpeed variable is high and second

NetworkSpeed variable is low. In both scenarios, we guaranty the VideoBitRate in high. In the former, no

constraints exist over the soft goal WaitingTimeOptimization; i.e., the unique soft dependency, SD1, for this

soft goal is not selected. Figure 8, on the left, presents this configuration in VariaMos.

On the contrary in the latter, the system needs to satisfice the soft goal WaitingTimeOptimization, regarding

the network speed is low. The initial configuration uses text as CL8 also has a highly positive influence on

WaitingTimeOptimization. Figure 8, on the right, presents this configuration in VariaMos. Nevertheless, the

monitoring constantly takes the bandwidth measurement. If it sees that the bandwidth is getting better, it

notifies the system to change to the Video operationalization as this is the preferred option for the learner´s

learning style.

Figure 8: Configuration scenarios for Verbal Learner using VariaMos tool

Frequency of Use Example

Let us suppose we have a learner that is not a frequent visitor of the system. In this case, the system should

maintain relevant communications using external systems, such as ExternalEmail or SMS. Nevertheless, if the

user becomes a frequent visitor, the system should encourage interactive communications.

The claims and SD required in this example can be expressed in a simplified way as:

Cl1_selected  SMS_selected ExternalMail_selected

CL1_selected  RelevantCommunications_ExpectedLevel = 4

CL1_selected  InteractiveCommunications_ExpectedLevel = 1

Cl2_selected  Chat_selected InternalMail_selected Forum_selected

CL2_selected  RelevantCommunications_ExpectedLevel = 1

CL2_selected  InteractiveCommunications_ExpectedLevel = 4

SD2_selected  (FrequencyOfUse= Low)

SD2_selected  RelevantCommunicacions_RequieredLevel = 4

10

SD5_selected  (FrequencyOfUse= High)

SD5_selected  InteractiveCommunicacions_RequieredLevel = 4

In this example we consider two context scenarios, the first FrequencyOfUse variable is low and the second

FrequencyOfUse variable is high. In the former, the system needs to satisfice the soft goal

RelevantCommunicacion when the frequency of use is low. Figure 9, on the left, presents this configuration in

VariaMos. In the latter, the system needs to satisfice the soft goal InteractiveCommunicacion, regarding the

frequency of use is high. The initial configuration uses ExternalMail or SMS as CL2 also has a highly positive

influence on RelevantCommunicacion. Nevertheless, the monitoring constantly takes monitor the access logs to

identify frequent users. Figure 9 presents the configuration in VariaMos on the right. If it sees that the user

becomes a frequent user, it notifies the system to change to the Chat, InternalMail or Forum operationalization

as this satisfice the soft goal InteractiveCommunication.

Figure 9: Configuration scenarios for Frequency of Use using VariaMos tool

Configurations of a scenario

From the generated optimal configurations, the e-learning system can decide the adaptation strategy to
follow when the requirements monitoring detects a satisfaction problem. For Instance, we chose a scenario with
the following context variables: GeographicChangeSpace is true, IsLongStay is true, FrequencyOfUse is low,
NoisyEnvironment is false and NetworkSpeed is low. For this scenario, we obtained 40 relevant configurations.
They are relevant because they ignore the selection between operationalization goals without influence in the
adaptation, for example, the selection of Chat, Forum or InternalMail have the same influence.

From the scenario, we are interested in the visual learner that prefers video for learning materials. Thus,
Table 1 presents the aggregated configurations for video, from 40 configurations, only 8 remain relevant. To
simplify the table, we do not display not selectable claims. The columns of Table 1 are then organized as
follow: Column 1 presents the VideoBitRate variable with Low and High values. Columns 2-9 represent the
selection (Y) or rejection (N) of one or more operationalizations, in the last two cases the selection is irrelevant
(-). Columns 10-15 represent the activation (Y) or deactivation (N) of claims. Columns 16-20 represent the soft
dependency activation (Y) or deactivation (N), columns 21-25 represent the soft goals required satisfaction
levels and columns 26-30 represent satisfaction (Y) or denial (N) of the soft goals.

Finally, in the table, the first configuration is the only alternative that satisfice all the soft goals. As the
scenario defines low NetworkSpeed, the alternative requires low VideoBitRate to satisfice the soft goal
WaitingTimeOptimization. Other alternatives do not satisfy all soft goals but is also possible to select them.

11

Table 1: Configurations for verbal learner style in a particular scenario

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

V
id

eo
B

it
R

at
e

C
h

at
 O

R
 F

o
ru

m
 O

r
In

te
rn

al
M

ai
l

S
M

S
 O

R
 E

x
te

rn
al

M
ai

l

A
u

d
io

 X
O

R
 G

ra
p

h
ic

s
X

O
R

 T
ex

t

V
id

eo

O
n

li
n

e
D

is
cu

ss
io

n
 G

ro
u

p

P
h

y
si

ca
l

S
el

f-
H

el
p
 G

r

U
se

 C
ap

ti
o

n
s

U
se

 S
u

b
ti

tl
es

C
L

1

C
L

2

C
L

3

C
L

4

C
L

9

C
L

1
3

S
D

1

S
D

2

S
D

3

S
D

4

S
D

5

G
ro

u
p

H
o

m
o

g
en

ei
ty

 -
 R

eq
u

ir
ed

 L
ev

el

R
el

ev
an

tC
o

m
m

u
n

ic
at

io
n

 -
 R

eq
u

ir
ed

 L
ev

el

A
cc

es
ib

il
it

y
E

n
h

ac
em

en
t

-
R

eq
u

ir
ed

 L
ev

el

W
ai

ti
n

g
T

im
eO

p
ti

m
iz

at
io

n
 -

 R
eq

u
ir

ed
 L

ev
el

In
te

ra
ct

iv
eC

o
m

m
u

n
ic

at
io

n
 -

 R
eq

u
ir

ed
 L

ev
el

G
ro

u
p

H
o

m
o

g
en

ei
ty

 -
 S

at
is

fi
ce

R
el

ev
an

tC
o

m
m

u
n

ic
at

io
n

-

S
at

is
fi

ce

A
cc

es
ib

il
it

y
E

n
h

ac
em

en
t

-
sa

ti
sf

ic
e

W
ai

ti
n

g
T

im
eO

p
ti

m
iz

at
io

n

-
S

at
is

fi
ce

In
te

ra
ct

iv
eC

o
m

m
u

n
ic

at
io

n
 -

 s
at

is
fi

ce

L N Y N Y N Y - - N Y Y N N Y Y Y Y Y N 4 4 4 4 1 Y Y Y Y Y

L N Y N Y Y N - - N Y N Y N Y Y Y Y Y N 4 4 4 4 1 N Y Y Y Y

L Y N N Y N Y - - Y N Y N N Y Y Y Y Y N 4 4 4 4 1 Y N Y Y Y

L Y N N Y Y N - - Y N N Y N Y Y Y Y Y N 4 4 4 4 1 N N Y Y Y

H N Y N Y N Y - - N Y Y N Y Y Y Y Y Y N 4 4 4 4 1 Y Y Y N Y

H N Y N Y Y N - - N Y N Y Y Y Y Y Y Y N 4 4 4 4 1 N Y Y N Y

H Y N N Y N Y - - Y N Y N Y Y Y Y Y Y N 4 4 4 4 1 Y N Y N Y

H Y N N Y Y N - - Y N N Y Y Y Y Y Y Y N 4 4 4 4 1 N N Y N Y

5 RELATED WORK

This research work is at the intersection of Dynamic Adaptive Systems (DASs) and adaptive e-learning

systems.

While the literature widely addresses DAS development, we are interested by runtime monitoring

techniques to detect deviations at runtime. The concept of requirements monitoring originates with Fickas and

Feather [24], which means gather information that can determine whether and to what degree a running system

is meeting its requirements. Later in other paper [25], they proposed a runtime event-monitoring system that

combines KAOS goal driven specification and FLEA (Formal Language for Expressing Temporal

Combinations of Events). FLEA translates KAOS assertions in temporal combinations of events. Whenever an

event occurs, it is automatically stored in a database and its defined action is executed. Subsequently, Robinson

[26] extended Feather’s model to address the problem of web services monitoring. The KAOS model was used

to define requirements model at design time while a database was used to support the runtime analysis.

Goldsby et al. [27] used i* goal model for requirements specification, but they assume that they have no

guarantee that such DAS could perform requirements engineering at runtime. Finally, despite the wide use of

goal models like KAOS and i* to represent requirements specification, however, these models only help list

different strategies that can be performed and they do not support system evolution. Consequently, the process

of requirements monitoring using these approaches still depends on a static monitoring strategy that enumerate

all possible alternative behaviour. To address this gap, Baresi et al. [28] have modified KAOS goal

specification and extended it by adaptive goals. The idea consists of using a membership function to assess

satisfaction requirements of goals at runtime and when some requirements reach a boundary trigger suitable

adaptation actions (adding/removing goals). The system is then guided by a fuzzy logic operators, which were

already used in RELAX [29] a declarative approach for specifying requirements for DAS. In contrast to use

declarative approaches accounting for more flexibility, Sawyer et al. [17] proposed an approach to represent

12

and transform an extended goal driven requirements model into a constraint program to manage the

configuration of Self-adaptive systems. In the same line with this approach we propose to use REFAS language

for requirements specification and automatically transform the model into a constraint satisfaction problem.

Our approach has the advantage that is guided by the graphical tool VariaMos, which allows the designer a

performance modelling and verification of the specification through simulations as presented in this paper.

In addition to goal-driven requirements, formalisms like probabilistic and real-time logics have been widely

used for requirements specification whose formal verification can then be carried out using probabilistic model

checker [30]. Nevertheless, the formalisation and inference using such techniques are always complex and

resources consuming [31]. In line with these approaches, Calinescu et al. [30], proposed a Dynamic QoS

management and optimization in service-based systems. They adopt Markov model to determine quantitatively

the reliability and performance quality metrics of service-based systems, which are then formally and

automatically analyzed to identify and enforce optimal system configurations. Ghezzi et al. [32] presented

SPY@RUNTIME approach that focus on verification of system behaviour at runtime. This latter is represented

by finite state automata. The tool can detect change and notify system designer by continuously checking the

executed program against a specification. In contrast to runtime verification that reacts just after anomalies are

detected, our purpose is to predict the deviations.

On the other hand, significant research effort has been devoted to support the development of adaptive e-

learning systems including techniques for learning monitoring. To the best of our knowledge, this latter consist

of just recording student interaction and analyzing log data to offer a visualization that help instructors become

aware of what is happening in distance learning classes ([33][34][35]), but it remains to see if the instructors

are willing to invest significant time and effort required for continuous monitoring. In contrast, to passive

monitoring, our approach leads to detect deviations from desired learning requirements at runtime and notify

the system with a list of alternative configurations. So it can adjust its strategies.

6 CONCLUSION

In this paper, an automated approach for requirements monitoring was introduced to explicitly support the
lack of dynamic requirements monitoring in adaptive e-learning systems, which allow these systems to respond
flexibly to dynamic learners needs and be aware of their environments. Our approach defines and implements
the autonomic computing MAPE loop architecture. The loop control continuously checks the requirements
satisfaction under changing context using a CSP solver. The strengths of our approach are that the requirements
model is specified by means of a language that combines goal-driven requirements with features and claims,
and it is fully automated. Thus, the requirements model is automatically transformed into a CSP, and the
verification of the requirements model is carried out through simulations using VariaMos tool. With this
automation, we have two advantages: first, this avoids loss of information and misinterpretation of the
specification during the transformation. Secondly, it explores the power to reason about goals to represent
complex constraints and expressiveness of constraint programming.

As the next step, we first aim to improve the generated constraint program and implement our monitoring
framework and then study its impact on the learning process and learners' satisfaction using real world data.

While the focus of this paper was add "self-adaptability" to adaptive e-learning systems by allowing the
evolution of these systems at runtime using constraint programming, future work will explore the proposed
approach in the verification and the evaluation of adaptive e-learning systems.

REFERENCES

[1] Mulwa, C., Lawless, S., Sharp, M., Arnedillo-Sanchez, I., & Wade, V. (2010, October). Adaptive

educational hypermedia systems in technology enhanced learning: a literature review. In Proceedings of

the 2010 ACM conference on Information technology education (pp. 73-84). ACM.

[2] Brusilovsky, P., & Peylo, C. (2003). Adaptive and intelligent web-based educational systems. International

Journal of Artificial Intelligence in Education, 13(2), 159-172.

[3] Brown, E., Cristea, A., Stewart, C., & Brailsford, T. (2005). Patterns in authoring of adaptive educational

hypermedia: a taxonomy of learning styles. Educational Technology & Society, 8(3), 77–90.

[4] Weber, G., & Brusilovsky, P. (2001). ELM-ART: An adaptive versatile system for Web-based instruction.

International Journal of Artificial Intelligence in Education (IJAIED), 12, 351-384.

13

[5] Mitrovic, A., Mayo, M., Suraweera, P. & Martin, B. (2001). Constraint-based tutors: A success story. In L.

Monostori, J. Vancza & M. Ali (Eds.), Proceedings of the 14th International conference on industrial and

engineering applications of artificial intelligence and expert systems IEA/AIE-2001,June 2001 (pp. 931–

940). Budapest.

[6] De Bra, P., Aerts, A., Berden, B., De Lange, B., Rousseau, B., Santic, T., ... & Stash, N. (2003, August).

AHA! The adaptive hypermedia architecture. In Proceedings of the fourteenth ACM conference on

Hypertext and hypermedia (pp. 81-84). ACM.

[7] Papanikolaou, K. A., Grigoriadou, M., Kornilakis, H., & Magoulas, G. D. (2003). Personalizing the

Interaction in a Web-based Educational Hypermedia System: the case of INSPIRE. User modeling and

user-adapted interaction, 13(3), 213-267.

[8] Tseng, J. C. R., Chu, H.-C., Hwang, G.-J., & Tsai, C.-C. (2008a). Development of an adaptive learning

system with two sources of personalization information.Computers and Education, 51, 776–786.

[9] Hwang, G. J., Kuo, F. R., Yin, P. Y. & Chuang, K. H. (2010). A heuristic algorithm for planning

personalized learning paths for context-aware ubiquitous learning. Computers & Education, 54, 404–415.

[10] Wang, S. L., & Wu, C. Y. (2011). Application of context-aware and personalized recommendation to

implement an adaptive ubiquitous learning system. Expert Systems with Applications, 38(9), 10831-

10838.

[11] Mampadi, F., Chen, S. Y., Ghinea, G., & Chen, M. P. (2011). Design of adaptive hypermedia learning

systems: A cognitive style approach. Computers & Education, 56(4), 1003-1011

[12] Chen, W., Niu, Z., Zhao, X., & Li, Y. (2014). A hybrid recommendation algorithm adapted in e-learning

environments. World Wide Web, 17(2), 271-284.

[13] Dardenne, A., Van Lamsweerde, A., & Fickas, S. (1993). Goal-directed requirements acquisition. Science

of computer programming, 20(1), 3-50.

[14] Brusilovsky, P., Farzan, R., & Ahn, J. W. (2006). Layered evaluation of adaptive search. In Workshop on

Evaluating Exploratory Search Systems at SIGIR06 (pp. 11-13).

[15] Gena, C., & Weibelzahl, S. (2007). Usability engineering for the adaptive web. In The adaptive web (pp.

720-762). Springer-Verlag.

[16] Paramythis, A., Weibelzahl, S., & Masthoff, J. (2010). Layered evaluation of interactive adaptive systems:

framework and formative methods. User Modeling and User-Adapted Interaction, 20(5), 383-453.

[17] Sawyer, P., Mazo, R., Diaz, D., Salinesi, C., & Hughes, D. (2012). Using constraint programming to

manage configurations in self-adaptive systems. Computer, (10), 56-63.

[18]Munoz-Fernández, J. C., Tamura, G., & Salinesi, C. (2014, September). Towards a requirements

specification multi-view framework for self-adaptive systems. In Computing Conference (CLEI), 2014

XL Latin American (pp. 1-12). IEEE.

[19] Mazo, R., Salinesi, C., & Diaz, D. (2012, June). VariaMos: a Tool for Product Line Driven Systems

Engineering with a Constraint Based Approach. In CAiSE Forum (pp. 147-154).

[20] Mazo, R., Salinesi, C., & Diaz, D. (2011). Abstract Constraints: A General Framework for Solver-

Independent Reasoning on Product Line Models. INSIGHT-Journal of International Council on Systems

Engineering (INCOSE), 14(4), 22.

[21] Franzoni, A. L., Assar, S., Defude, B., & Rojas, J. (2008, July). Student learning styles adaptation method

based on teaching strategies and electronic media. In Advanced Learning Technologies, 2008. ICALT'08.

Eighth IEEE International Conference on (pp. 778-782). IEEE.

[22] Felder, R. M., & Silverman, L. K. (1988). Learning and teaching styles in engineering education.

Engineering Education, 75(7), 674-681.

[23] Brun, Y., Serugendo, G. D. M., Gacek, C., Giese, H., Kienle, H., Litoiu, M., ... & Shaw, M. (2009).

Engineering self-adaptive systems through feedback loops. In Software engineering for self-adaptive

systems (pp. 48-70). Springer Berlin Heidelberg.

[24] Fickas, S., & Feather, M. S. (1995, March). Requirements monitoring in dynamic environments. In

Requirements Engineering, 1995., Proceedings of the Second IEEE International Symposium on (pp. 140-

147). IEEE.

[25] Feather, M. S., Fickas, S., Van Lamsweerde, A., & Ponsard, C. (1998, April). Reconciling system

requirements and runtime behavior. In Proceedings of the 9th international workshop on Software

specification and design (p. 50). IEEE Computer Society.

14

[26] Robinson, W. N. (2003, September). Monitoring web service requirements. In Requirements Engineering

Conference, 2003. Proceedings. 11th IEEE International (pp. 65-74). IEEE.

[27] Goldsby, H. J., Sawyer, P., Bencomo, N., Cheng, B. H., & Hughes, D. (2008, March). Goal-based

modeling of dynamically adaptive system requirements. In Engineering of Computer Based Systems,

2008. ECBS 2008. 15th Annual IEEE International Conference and Workshop on the (pp. 36-45). IEEE.

[28] Baresi, L., & Pasquale, L. (2010, July). Adaptive goals for self-adaptive service compositions. In Web

Services (ICWS), 2010 IEEE international conference on (pp. 353-360). IEEE.

[29] Whittle, J., Sawyer, P., Bencomo, N., Cheng, B. H., & Bruel, J. M. (2009, August). Relax: Incorporating

uncertainty into the specification of self-adaptive systems. In Requirements Engineering Conference,

2009. RE'09. 17th IEEE International (pp. 79-88). IEEE.

[30] Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., & Tamburrelli, G. (2011). Dynamic QoS

management and optimization in service-based systems. Software Engineering, IEEE Transactions on,

37(3), 387-409.

[31] Lalanda, P., McCann, J. A., & Diaconescu, A. (2013). Autonomic Computing. Springer London Limited.

[32] Ghezzi, C., Mocci, A., & Sangiorgio, M. (2012, June). Runtime monitoring of component changes with

spy@ runtime. In Software Engineering (ICSE), 2012 34th International Conference on (pp. 1403-1406).

IEEE.

[33] Graphvis (2004) visualization tool monitoring group communications in order to help instructors detect

collaboration problems.

[34] Mazza, R., & Dimitrova, V. (2007). CourseVis: A graphical student monitoring tool for supporting

instructors in web-based distance courses. International Journal of Human-Computer Studies, 65(2), 125-

139.

[35] Romero-Zaldivar, V. A., Pardo, A., Burgos, D., & Kloos, C. D. (2012). Monitoring student progress using

virtual appliances: A case study. Computers & Education, 58(4), 1058-1067.

