A Framework for Occupational Fraud Detection by Social Network Analysis

Abstract : This paper explores issues related to occupational fraud detection. We observe over the past years, a broad use of network research across social and physical sciences including but not limited to social sharing and filtering, recommendation systems, marketing and customer intelligence, counter intelligence and law enforcement. However, the rate of social network analysis adoption in organizations by control professionals or even by academics for insider fraud detection purpose is still very low. This paper introduces the OFD – Occupational Fraud Detection framework, based on formal social network analysis and semantic reasoning principles by taking a design science research perspective .
Type de document :
Poster
CAISE 2015 FORUM, Jun 2015, Stockholm, Sweden. CEUR Vol-1367, CAiSE Forum 2015. 〈http://ceur-ws.org/Vol-1367/〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal-paris1.archives-ouvertes.fr/hal-01217355
Contributeur : Selmin Nurcan <>
Soumis le : lundi 19 octobre 2015 - 14:45:50
Dernière modification le : mercredi 21 octobre 2015 - 10:48:45
Document(s) archivé(s) le : jeudi 27 avril 2017 - 06:17:07

Fichier

A Framework For Occupational F...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01217355, version 1

Collections

Citation

Sanni Lookman, Selmin Nurcan. A Framework for Occupational Fraud Detection by Social Network Analysis. CAISE 2015 FORUM, Jun 2015, Stockholm, Sweden. CEUR Vol-1367, CAiSE Forum 2015. 〈http://ceur-ws.org/Vol-1367/〉. 〈hal-01217355〉

Partager

Métriques

Consultations de la notice

141

Téléchargements de fichiers

283