On representations of isometric isomorphisms between some monoid of functions
Mohammed Bachir

To cite this version:
Mohammed Bachir. On representations of isometric isomorphisms between some monoid of functions. 2016. <hal-01378231>

HAL Id: hal-01378231
https://hal-paris1.archives-ouvertes.fr/hal-01378231
Submitted on 9 Oct 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On representations of isometric isomorphisms between some monoid of functions.

Mohammed Bachir

October 9, 2016

Laboratoire SAMM 4543, Université Paris 1 Panthéon-Sorbonne, Centre P.M.F. 90 rue Tolbiac 75634 Paris cedex 13

Email : Mohammed.Bachir@univ-paris1.fr

Abstract. We prove that each isometric isomorphism, between the monoids of all nonegative 1-Lipschitz maps defined on invariant metric groups and eqiuped with the inf-convolution law, is given canonically from an isometric isomorphism between their groups of units.

Keyword, phrase: Inf-convolution; 1-Lipschitz; isometries; group and monoid structure; Banach-Stone theorem.

2010 Mathematics Subject: 46T99; 26E99; 20M32; 47B33.

Introduction.

Given a metric space (X, d), we denote by $\text{Lip}_1^+(X)$ the set of all nonnegative 1-Lipschitz maps on X equipped with the metric

$$
\rho(f, g) := \sup_{x \in X} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|}, \quad \forall f, g \in \text{Lip}_1^+(X).
$$

If X is a group and $f, g : X \rightarrow \mathbb{R}$ are two functions, the inf-convolution of f and g is defined by the following formula

$$(f \oplus g)(x) := \inf_{y, z \in X/yz=x} \{f(y) + g(z)\}; \quad \forall x \in X.
$$

We recall the following definition.

Definition 1. Let (X, d) be a metric group. We say that (X, d) is invariant if and only if,

$$d(xy, xz) = d(yx, zx) = d(y, z), \quad \forall x, y, z \in X.
$$

If moreover X is complete for the metric d, then we say that (X, d) is an invariant complete metric group.
Examples of invariant metric groups are given in [1]. In all the paper \((X, d)\) and
\((Y, d')\) will be assumed to be invariant metric groups having respectively \(e\) and \(e'\) as
identity element and \((\overline{X}, \overline{d})\) (resp. \((\overline{Y}, \overline{d'})\)) denotes the group completion of \((X, d)\) (resp.
of \((Y, d')\)).

Recently, we established in [1] that the set \((\text{Lip}^+_1(X), \oplus)\) enjoys a monoid structure,
having the map \(\delta_e : x \mapsto d(x, e)\) as identity element and that the group completion \((\overline{X}, \overline{d})\)
of \((X, d)\) is completely determined by the metric monoid structure of \((\text{Lip}^+_1(X), \oplus, \rho)\).
In other words, \((\text{Lip}^+_1(X), \oplus, \rho)\) and \((\text{Lip}^+_1(Y), \oplus, \rho)\) are isometrically isomorphic as
monoids if and only if, \((\overline{X}, \overline{d})\) and \((\overline{Y}, \overline{d'})\) are isometrically isomorphic as groups. Also,
we proved that the group of all invertible elements of \(\text{Lip}^+_1(X)\) coincides, up to isometric isomorphism,
with the group completion \(\overline{X}\) (See [Theorem 1., [1]] and [Theorem 2., [1]]).
The main result of [1], gives a Banach-Stone type theorem.

The representations of isometries between Banach spaces of Lipschitz maps defined
on metric spaces and equipped with their natural norms, was considered by several
authors [3], [6], [5]. In general, such isometries are given, under some conditions, canonically
as a composition operators. Other Banach-Stone type theorems are also given for
unital vector lattices structure [4].

In this note, we provide the following result which gives complete representations of
isometric isomorphisms for the monoid structure between \(\text{Lip}^+_1(X)\) and \(\text{Lip}^+_1(Y)\). Our
result complement those given in [1] and [2].

Theorem 1. Let \((X, d)\) and \((Y, d')\) be two invariant metric groups. Let \(\Phi\) be a map from
\((\text{Lip}^+_1(X), \oplus, \rho)\) into \((\text{Lip}^+_1(Y), \oplus, \rho)\). Then the following assertions are equivalent.

1. \(\Phi\) is an isometric isomorphism of monoids
2. there exists an isometric isomorphism of groups \(T : (\overline{X}, \overline{d}) \longrightarrow (\overline{Y}, \overline{d'})\) such
 that \(\Phi(f) = (\overline{f} \circ T^{-1})\mid_Y\) for all \(f \in \text{Lip}^+_1(X)\), where \(\overline{f}\) denotes
 the unique 1-Lipschitz extension of \(f\) to \(\overline{X}\) and \((\overline{f} \circ T^{-1})\mid_Y\) denotes the restriction of
 \(\overline{f} \circ T^{-1}\) to \(Y\).

If \(A\) (resp. \(X\)) is a metric monoid (resp. a metric group), by \(\text{Is}_m(A)\) (resp. \(\text{Is}_g(X)\))
we denote the group of all isometric automorphism of the monoid \(A\) (resp. of the group
\(X\)). The symbol "\(\simeq\)" means "isomorphic as groups". An immediate consequence of
Theorem 1 is given in the following corollary.

Corollary 1. Let \((X, d)\) be an invariant metric group. Then,

\[\text{Is}_m(\text{Lip}^+_1(X)) \simeq \text{Is}_g(\overline{X}).\]

As application of the results of this note, we discover new semigroups law on \(\mathbb{R}^n\)
(different from the usual operation \(+\)) having some nice properties. We treat this
question in Example 1 at Section 3, where it is shown that each finite group structure
\((G, \cdot)\), extend canonically to a semigroup structure on \(\mathbb{R}^n\) (where \(n\) is the cardinal of
\(G\)). In other words, there always exists a semigroup law \(*_G\) on \(\mathbb{R}^n\) and an injective
group morphism \(i\) from \((G, \cdot)\) into \((\mathbb{R}^n, *_G)\) such that the maximal subgroup of
\((\mathbb{R}^n, *_G)\) having \(e := (0, 1, 1, \ldots, 1)\) as identity element is isomorphic to the group \(G \times \mathbb{R}\). The idea
First, we prove that \(\Phi(0) = 0 \) is an isometric group isomorphism by [Lemma 2., [1]]. Thus, the map \(G \) gives an isometric group isomorphism from \(X \) into \(\delta \Phi \). Indeed, for all \(x \in X \), we have that 0 + \(\delta x \) = 0. Thus,

This note is organized as follows. Section 1 concern the proof of Theorem 1 and is divided on two subsections: in Subsection 1.1 we prove some useful lemmas and in Subsection 1.2, we give the proof of the main result Theorem 1. In Section 2, we give some properties of the group of invertible elements for the inf-convolution law. In section 3, we review the results of this paper in the algebraic case.

1 Proof of the main result.

1.1 Preliminary results

We follow the notation of [1]. For each fixed point \(x \in X \), the map \(\delta x \) is defined from \(X \) into \(\mathbb{R} \) as follows

\[
\delta_x : X \to \mathbb{R} \\
z \mapsto d(z, x) = d(zx^{-1}, e).
\]

We define the subset \(G(X) \) of \(Lip^1_+(X) \) as follows

\[
G(X) := \{ \delta_x : x \in X \} \subset Lip^1_+(X).
\]

We consider the operator \(\gamma_x \) defined as follows

\[
\gamma_x : X \to G(X) \\
x \mapsto \delta_x
\]

We are going to prove some lemmas.

Lemma 1. Let \((X, d) \) and \((Y, d') \) be two invariant complete metric groups having respectively \(e \) and \(e' \) as identity elements. Let \(\Phi \) be a map from \((Lip^1_+(X), \oplus, \rho) \) onto \((Lip^1_+(Y), \oplus, \rho) \) which is an isometric isomorphism of monoids. Then, the following assertions holds.

1. For all \(f \in Lip^1_+(X) \), \(\inf Y \Phi(f) = \inf X f \) and for all \(r \in \mathbb{R}^+ \), \(\Phi(r) = r \).
2. There exists an isometric isomorphism of groups \(T : (X, d) \to (Y, d') \) such that \(\Phi(r + \delta x) = r + \delta_x \circ T^{-1} \), for all \(r \in \mathbb{R}^+ \) and for all \(x \in X \).
3. \(\Phi(f + r) = \Phi(f) + r \), for all \(f \in Lip^1_+(X) \) and for all \(r \in \mathbb{R}^+ \).

Proof: Since an isomorphism of monoids, sends the group of unit onto the group of unit, then using [Theorem 1., [1]], the restriction \(T_1 := \Phi|G(X) \) is an isometric group isomorphism from \(G(X) \) onto \(G(Y) \). On the other hand, the map \(\gamma_x : X \to G(X) \) gives an isometric group isomorphism by [Lemma 2., [1]]. Thus, the map \(T := \gamma_Y^{-1} \circ T_1 \circ \gamma_X \), gives an isometric group isomorphism from \(X \) onto \(Y \) and we have that for all \(x \in X \), \(\Phi(\delta x) := T_1(\delta x) = T_1 \circ \gamma_X(x) = \gamma_Y \circ T(x) = \delta_x \circ T^{-1} \).

We prove the part (1). Note that \(f + 0 = 0 \oplus f = \inf x \in X f \) for all \(f \in Lip^1_+(X) \). First, we prove that \(\Phi(0) = 0 \). Indeed, for all \(x \in X \), we have that 0 + \(\delta x \) = 0.
\(\Phi(0) = \Phi(0) \oplus \Phi(\delta_x) = \Phi(0) \oplus \delta_{T_x}. \) Using the surjectivity of \(T \), we obtain that for all \(y \in Y \), we have that \(\Phi(0) = \Phi(0) \oplus \delta_y \). So, using the definition of the \(f \)-convolution, we get \(\Phi(0)(z) = \inf_{t\in\mathbb{R}} \{ \Phi(0)(t) + \delta_y(s) \} \leq \Phi(0)(zy^{-1}) \) for all \(y, z \in Y \). By taking the infimum over \(y \in Y \), we obtain that \(\Phi(0)(z) \leq \inf_Y \Phi(0) \), for all \(z \in Y \). It follows that \(\Phi(0) = \inf_Y \Phi(0) \) is a constant function. Now, since \(\Phi(0) \) is a constant function, we have \(2\Phi(0) = \Phi(0) \oplus \Phi(0) = \Phi(0) \oplus 0 = \Phi(0) \), it follows that \(\Phi(0) = 0 \). Finally, we prove that \(\Phi(r) = r \) for all \(r \in \mathbb{R}^+ \). Indeed, since \(r \oplus 0 = r \) and \(\Phi(0) = 0 \), it follows that \(\Phi(r) = \Phi(r) \oplus 0 = \inf_Y \Phi(r) \), which implies that \(\Phi(r) \) is a constant function. Using the fact that \(\Phi \) is an isometry, we get that \(\rho(\Phi(r), 0) = \rho(\Phi(r), \Phi(0)) = \rho(r, 0) \). In other word, \(\frac{\Phi(r)}{1 + \Phi(r)} = \frac{r}{1 + r} \), which implies that \(\Phi(r) = r \). Now, we have \(\inf_{g \in Y} \Phi(f) = \Phi(f) \oplus 0 = \Phi(f) \oplus \Phi(0) = \Phi(f \oplus 0) = \Phi(\inf_{x \in X} f) = \inf_{x \in X} f \).

We prove the part (2). Let \(r \in \mathbb{R}^+ \) and set \(g = \Phi(r + \delta_e) \in Lip^1_X(Y) \). We first prove that \(g = r + \delta_e \). Using the part (1), we have that \(r = \Phi(r) = \Phi(\inf_{x \in X} (r + \delta_e)) = \inf_{g \in Y} \Phi(r + \delta_e) \leq \Phi(r + \delta_e) = g \). Thus \(g - r \geq 0 \) and so \(g - r \in Lip^1_X(Y) \). On the other hand, since \(Lip^1_X(Y) \) is a monoid having \(\delta_e \) as identity element, we have that \(g = (g - r) \oplus (r + \delta_e) = (r + \delta_e) \oplus (g - r) \). Now, since \(\Phi^{-1} \) is a monoid morphism, we get that

\[
\begin{align*}
 r + \delta_e &= \Phi^{-1}(g) \\
 &= \Phi^{-1}(g - r) \oplus \Phi^{-1}(r + \delta_e) = \Phi^{-1}(r + \delta_e) \oplus \Phi^{-1}(g - r).
\end{align*}
\]

As above we prove that \(\Phi^{-1}(r + \delta_e) \geq 0 \). Thus, \(\Phi^{-1}(r + \delta_e) - r \in Lip^1_X(X) \). Since \(r \) is a constant function, the above equality is equivalent to the following one

\[
\delta_e = \Phi^{-1}(g - r) \oplus (\Phi^{-1}(r + \delta_e) - r) = (\Phi^{-1}(r + \delta_e) - r) \oplus \Phi^{-1}(g - r).
\]

Since from [Theorem 1, [1]], the invertible element in \(Lip^1_X(X) \) are exactly the element of \(\mathcal{G}(X) \) and since \(\mathcal{G}(X) \) is a group by [Lemma 2, [1]], we deduce from the above equality that \(\Phi^{-1}(r + \delta_e) - r \in \mathcal{G}(X) \) and \(\Phi^{-1}(g - r) \in \mathcal{G}(X) \) and there exists \(\alpha(r), \beta(r) \in X \) such that

\[
\begin{align*}
 e &= \alpha(r) \beta(r) \\
 \Phi^{-1}(r + \delta_e) - r &= \delta_{\alpha(r)} \\
 \Phi^{-1}(g - r) &= \delta_{\beta(r)}
\end{align*}
\]

This implies that

\[
\begin{align*}
 e &= \alpha(r) \beta(r) \\
 \Phi(r + \delta_{\alpha(r)}) &= r + \delta_e \\
 g &= r + \Phi(\delta_{\beta(r)}) = r + \delta_{T(\beta(r))}
\end{align*}
\] (1)

We need to prove that \(\alpha(r) = \beta(r) = e \) for all \(r \in \mathbb{R}^+ \). Indeed, since \(\Phi \) is an isometry, we have that

\[
\rho(\Phi(r + \delta_{\alpha(r)}), \Phi(\delta_e)) = \rho(r + \delta_{\alpha(r)}, \delta_e).
\]

Using the above formula, the second equations in (1) and the definition of the metric \(\rho \) with the fact that \(\Phi(\delta_e) = \delta_{e'} \), we get
\[\frac{r}{1 + r} = \rho(r + \delta_{e'}, \delta_{e'}) \]
\[= \rho(\Phi(r + \delta_{\alpha(r)}), \Phi(\delta_{e})) \]
\[= \rho(r + \delta_{\alpha(r)}, \delta_{e}) \]
\[= \sup_{t \in X} \frac{|r + \delta_{\alpha(r)}(t) - \delta_{e}(t)|}{1 + |r + \delta_{\alpha(r)}(t) - \delta_{e}(t)|} \]
\[\geq \frac{r + \delta_{\alpha(r)}(e)}{1 + r + \delta_{\alpha(r)}(e)} \]

A simple computation of the above inequality gives that \(\delta_{\alpha(r)}(e) \leq 0 \) i.e. \(d(\alpha(r), e) \leq 0 \). In other word, we have that \(\alpha(r) = e \) for all \(r \in \mathbb{R}^+ \). On the other hand, using the first equation of (1), we get that \(\beta(r) = e \) for all \(r \in \mathbb{R}^+ \). It follows from the equation (1) that \(\Phi(r + \delta_{e}) = r + \delta_{e'} \) for all \(r \in \mathbb{R}^+ \). Now, it is easy to see that for all \(r \in \mathbb{R}^+ \) and all \(x \in X \) we have
\[r + \delta_{x} = (r + \delta_{e}) \oplus \delta_{x}. \]

It follows that
\[\Phi(r + \delta_{x}) = \Phi(r + \delta_{e}) \oplus \Phi(\delta_{x}) \]
\[= (r + \delta_{e'}) \oplus \delta_{T(x)} \]
\[= r + \delta_{T(x)} \]

Since \(T \) is isometric, we obtain that \(\Phi(r + \delta_{x}) = r + \delta_{T(x)} = r + \delta_{x} \circ T^{-1} \).

Now, we prove the part (3). Let \(f \in Lip_1^1(X) \) and \(r \in \mathbb{R}^+ \). It is easy to see that \(f + r = f \oplus (r + \delta_{e}) \). So, using the part (2), we obtain that \(\Phi(f + r) = \Phi(f) \oplus \Phi(r + \delta_{e}) = \Phi(f) \oplus (r + \delta_{e'}) = \Phi(f) + r \).

\[\square \]

Lemma 2. Let \((X, d)\) be an invariant metric group. Let \(f \in Lip_1^1(X) \). Then, for all \(x \in X \) and all positive real number \(a \) such that \(a \geq f(x) \), we have that
\[f(x) = (\inf(\delta_{e}, a) \oplus f)(x). \]

Proof. Let \(x \in X \) and \(a \geq 0 \) such that \(f(x) \leq a \). We have that
\[(\inf(\delta_{e}, a) \oplus f)(x) = \inf_{t \in X} \{ \inf_{t \in X} \{ f(t) + d(xt^{-1}, e), a \} + f(t) \} \]
\[= \inf_{t \in X} \{ f(t) + \inf_{t \in X} \{ d(t, x), a \} \} \]
\[= \min \left\{ \inf_{t \in X, d(t, x) \leq a} \{ f(t) + d(t, x), a \} ; \inf_{t \in X, d(t, x) \geq a} \{ f(t) + d(t, x) \} \right\} \]
\[= \min \{ \inf_{t/d(t, x) \leq a} \{ f(t) + d(t, x) \} , \inf_{t/d(t, x) \geq a} \{ f(t) + a \} \}. \]
Since f is 1-Lipschitz we have that $f(x) = \inf_{t/d(t,x) \leq a} \{f(t) + d(t, x)\}$. It follows that

$$(\inf(\delta_e, a) \oplus f)(x) = \min\{f(x), \inf_{t/d(t,x) \geq a} \{f(t)\} + a\} = f(x).$$

\[\Box\]

Lemma 3. Let (X, d) be an invariant metric group. Then, the following assertions hold.

1. for each $f \in \text{Lip}_+^1(X)$ and for each bounded function $h \in \text{Lip}_+^1(X)$, the function $f \oplus h \in \text{Lip}_+^1(X)$ is bounded.
2. Let $f, g \in \text{Lip}_+^1(X)$, then the following assertions are equivalent.
 a. $f \leq g$
 b. $h \oplus f \leq h \oplus g$, for all function $h \in \text{Lip}_+^1(X)$ which is bounded.

Proof. (1) Since $0 \leq f \oplus h(x) \leq f(e) + h(x)$ for all $x \in X$ and since h is bounded, it follows that $f \oplus h$ is bounded. On the other hand, $f \oplus h \in \text{Lip}_+^1(X)$ since $\text{Lip}_+^1(X)$ is a monoid.

(2) The part $(a) \implies (b)$ is easy. Let us prove the part $(b) \implies (a)$. Indeed, let $x \in X$ and chose a positive real number $a \geq \max(f(x), g(x))$. Set $h := \inf(\delta_e, a)$. It is clear that $h \in \text{Lip}_+^1(X)$ and is bounded. So, from the hypothesis (b) we have that $(\inf(\delta_e, a) \oplus f) \leq (\inf(\delta_e, a) \oplus g)$. Using Lemma 2, we obtain that $f(x) \leq g(x)$.

\[\Box\]

Lemma 4. Let A be a nonempty set and $f, g : A \rightarrow \mathbb{R}$ be two functions. Then, the following assertions are equivalent.

1. $\sup_{x \in A} |f(x) - g(x)| < +\infty$.
2. $\sup_{x \in A} \frac{|f(x) - g(x)|}{|f(x) - g(x)|} < 1$.

Proof. Suppose that (1) hold. Using [Lemma 1., [1]], we have that $\sup_{x \in A} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} = \frac{\sup_{x \in A} |f(x) - g(x)|}{1 + \sup_{x \in A} |f(x) - g(x)|} < 1$. Now, suppose that (2) holds. Set $\alpha = \sup_{x \in A} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} < 1$. Then, we obtain that $|f(x) - g(x)| \leq \frac{\alpha}{1 - \alpha}$, for all $x \in A$. This implies that $\sup_{x \in A} |f(x) - g(x)| < +\infty$.

\[\Box\]

Lemma 5. Let (X, d) and (Y, d') be two invariant complete metric groups. Let

$$\Phi : (\text{Lip}_+^1(X), \rho) \rightarrow (\text{Lip}_+^1(Y), \rho)$$

be an isometric isomorphism of monoids. Then, for all $f, g \in \text{Lip}_+^1(X)$, we have $f \leq g \iff \Phi(f) \leq \Phi(g)$.

Proof. The proof is divided on two cases.

Case 1: (The case where f and g are bounded.) Let $f, g \in \text{Lip}_+^1(X)$ be bounded functions. In this case we have $\sup_{x \in X} |f(x) - g(x)| < +\infty$, so using Lemma 4 and
the fact that Φ is isometric, we get also that $\sup_{y \in Y} \|\Phi(f)(y) - \Phi(g)(y)\| < +\infty$. Using [Lemma 1. [1]] and the fact that Φ is isometric, we obtain that

$$\frac{\sup_{y \in Y} |\Phi(f)(y) - \Phi(g)(y)|}{1 + \sup_{y \in Y} |\Phi(f)(y) - \Phi(g)(y)|} = \frac{\sup_{x \in X} |f(x) - g(x)|}{1 + \sup_{x \in X} |f(x) - g(x)|}.$$

This implies that

$$\sup_{y \in Y} |\Phi(f)(y) - \Phi(g)(y)| = \sup_{x \in X} |f(x) - g(x)|.$$

Set $r := \sup_{y \in Y} |\Phi(f)(y) - \Phi(g)(y)| = \sup_{x \in X} |f(x) - g(x)| < +\infty$. By applying the above arguments to $f + r$ and g which are bounded, we also get that

$$\sup_{y \in Y} |\Phi(f + r)(y) - \Phi(g)(y)| = \sup_{x \in X} |(f + r)(x) - g(x)|.$$

Using the fact that $\Phi(f + r) = \Phi(f) + r$ (by Lemma 1) and the choice of the number r, we get that

$$\sup_{x \in X} \{\Phi(f)(x) - \Phi(g)(x) + r\} = \sup_{x \in X} \{f(x) - g(x) + r\}$$

which implies that

$$\sup_{y \in Y} \{\Phi(f)(y) - \Phi(g)(y)\} = \sup_{x \in X} \{f(x) - g(x)\}.$$

It follows that $f \leq g \iff \Phi(f) \leq \Phi(g)$. Replacing Φ by Φ^{-1} we also have $k \leq l \iff \Phi^{-1}(k) \leq \Phi^{-1}(l)$, for all bounded functions $k, l \in Lip_1^+$.

Case 2: (The general case.) First, note that for each bounded function $k \in Lip_1^+(Y)$, we have that $\Phi^{-1}(k) \in Lip_1^+(X)$ is bounded. Indeed, there exists $r \in \mathbb{R}_+$ such that $0 \leq k \leq r$. Using the above case, we get that $\Phi^{-1}(0) \leq \Phi^{-1}(k) \leq \Phi^{-1}(r)$. This shows that $\Phi^{-1}(k)$ is bounded, since $\Phi^{-1}(0) = 0$ and $\Phi^{-1}(r) = r$ by Lemma 1.

Now, let $f, g \in Lip_1^+(X)$ be two functions such that $f \leq g$. Let $k \in Lip_1^+(Y)$ be any bounded function. It follows that $f \oplus \Phi^{-1}(k) \leq g \oplus \Phi^{-1}(k)$. From the part (1) of Lemma 3, we have that $f \oplus \Phi^{-1}(k), g \oplus \Phi^{-1}(k) \in Lip_1^+(X)$ are bounded. Using Case 1., we get that $\Phi(f \oplus \Phi^{-1}(k)) \leq \Phi(g \oplus \Phi^{-1}(k))$. Since Φ is a morphism, we have that $\Phi(f) \oplus k \leq \Phi(g) \oplus k$, which implies that $\Phi(f) \leq \Phi(g)$ by using the part (2) of Lemma 3. The converse is true by changing Φ by Φ^{-1}.

\begin{lemma}
Let (X, d) and (Y, d') be two invariant metric groups and let Φ be a monoid isomorphism $\Phi : (Lip_1^+(X), \oplus, \rho) \rightarrow (Lip_1^+(Y), \oplus, \rho)$. Then, the following assertions are equivalent.

1. for all $f, g \in Lip_1^+(X)$, we have that $(f \leq g \iff \Phi(f) \leq \Phi(g))$.
2. for all $f', g' \in Lip_1^+(Y)$, we have that $(f' \leq g' \iff \Phi^{-1}(f') \leq \Phi^{-1}(g'))$.
3. for all family $(f_i)_{i \in I} \subset Lip_1^+(X)$, where I is any nonempty set, we have $\Phi(\inf_{i \in I} f_i) = \inf_{i \in I} \Phi(f_i)$.
\end{lemma}
Proof. The part (1) \iff (2) is clear. Let us prove (1) \implies (3). Let $(f_i)_{i \in I} \subset \text{Lip}^+_1(X)$, where I is any nonempty set. First, it is easy to see that the infimum of a nonempty family of nonnegative and 1-Lipschitz functions is also nonnegative and 1-Lipschitz function. So, $\inf_{i \in I} f_i \in \text{Lip}^+_1(X)$. For all $i \in I$, we have that $\inf_{i \in I} f_i \leq f_i$, which implies by hypothesis that $\Phi(\inf_{i \in I} f_i) \leq \Phi(f_i)$ for all $i \in I$. Consequently we have that $\Phi(\inf_{i \in I} f_i) \leq \inf_{i \in I} \Phi(f_i)$. On the other hand, since $\inf_{i \in I} \Phi(f_i) \leq \Phi(f_i)$ for all $i \in I$, using (2), we have that $\Phi^{-1}(\inf_{i \in I} \Phi(f_i)) \leq f_i$, for all $i \in I$. It follows that, $\Phi^{-1}(\inf_{i \in I} \Phi(f_i)) \leq \inf_{i \in I} f_i$. Using (1), we obtain that $\inf_{i \in I} \Phi(f_i) \leq \Phi(\inf_{i \in I} f_i)$. Hence, $\inf_{i \in I} \Phi(f_i) = \Phi(\inf_{i \in I} f_i)$. Now, let us prove that (3) \implies (1). First, let us show that from (3) we also have that $\Phi^{-1}(\inf_{i \in I} g_i) = \inf_{i \in I} \Phi^{-1}(g_i)$, where I is a nonempty set and $g_i \in \text{Lip}^+_1(Y)$ for all $i \in I$. Indeed, since Φ is bijective, there exists $(f_i)_{i \in I} \subset \text{Lip}^+_1(X)$ such that $g_i = \Phi(f_i)$ for all $i \in I$. Thus, $\inf_{i \in I} g_i = \inf_{i \in I} \Phi(f_i) = \Phi(\inf_{i \in I} f_i) = \Phi(\inf_{i \in I} \Phi^{-1}(g_i))$, which implies that $\Phi^{-1}(\inf_{i \in I} g_i) = \inf_{i \in I} \Phi^{-1}(g_i)$. Now, let $f, g \in \text{Lip}^+_1(X)$. We have that $f \leq g$ \iff $f = \inf(f, g)$, so if $f \leq g$ then $\Phi(f) = \Phi(\inf(f, g)) = \inf(\Phi(f), \Phi(g))$. This implies that $\Phi(f) \leq \Phi(g)$. Conversely, if $\Phi(f) \leq \Phi(g)$ then $\Phi(f) = \inf(\Phi(f), \Phi(g))$ and so $f = \Phi^{-1}(\Phi(f)) = \Phi^{-1}(\inf(\Phi(f), \Phi(g))) = \inf(\Phi^{-1}(\Phi(f)), \Phi^{-1}(\Phi(g))) = \inf(f, g)$. This implies that $f \leq g$.

\[\square\]

1.2 Proof of the main result.

Now, we give the proof of the main result.

Proof of Theorem 1. We know from [Lemma 3. , [1]] that the map

$$
\chi_X : (\text{Lip}^+_1(X), \oplus, \rho) \rightarrow (\text{Lip}^+_1(X), \oplus, \rho)
$$

$$
f \mapsto \overline{f}
$$

is an isometric isomorphism of monoids, where \overline{f} denotes the unique 1-Lipschitz extension of f to \overline{X}. Let us define the map $\overline{\Phi} : (\text{Lip}^+_1(X), \oplus, \rho) \rightarrow (\text{Lip}^+_1(Y), \oplus, \rho)$ by $\overline{\Phi} := \chi_X \circ \Phi \circ \chi_X^{-1}$. Then, $\overline{\Phi}$ is an isometric isomorphism of monoids.

(1) \implies (2). Since $\text{Lip}^+_1(\overline{X})$ is a monoid having $\delta_e : \overline{X} \ni x \mapsto \overline{a}(x, e)$ as identity element, we have that $\overline{f} = \delta_e \oplus \overline{f}$ for all $\overline{f} \in \text{Lip}^+_1(\overline{X})$. Thus, $\overline{f} = \inf_{t \in \overline{X}} (\overline{f}(t) + \delta_t)$ for all $\overline{f} \in \text{Lip}^+_1(\overline{X})$. Using Lemma 6 together with Lemma 5, we have that for all $\overline{f} \in \text{Lip}^+_1(\overline{X})$, $\overline{\Phi}(\overline{f}) = \overline{\Phi}(\inf_{t \in \overline{X}} (\overline{f}(t) + \delta_t)) = \inf_{t \in \overline{X}} \overline{\overline{f}}(\overline{f}(t) + \delta_t)$. Using Lemma 1, there exists an isometric isomorphism of groups $T : (\overline{X}, \overline{d}) \rightarrow (\overline{Y}, \overline{d})$ such that $\overline{\Phi}(\overline{f}(t) + \delta_t) = \overline{f}(t) + \delta_{T(t)}$, for all $t \in \overline{X}$. Thus, we get that $\overline{\Phi}(\overline{f}) = \inf_{t \in \overline{X}} (\overline{f}(t) + \delta_{T(t)}).$ Equivalently, for all $y \in \overline{Y}$, we have

$$
\overline{\Phi}(\overline{f})(y) = \inf_{t \in \overline{X}} (\overline{f}(t) + \delta_{T(t)}(y))
$$

$$
= \inf_{t \in \overline{X}} (\overline{f}(t) + \overline{\overline{f}}(y, T(t)))
$$

$$
= \inf_{t \in \overline{X}} (\overline{f}(t) + \overline{a}(T^{-1}(y), t))
$$

$$
= (\delta_e \oplus \overline{f})(T^{-1}(y))
$$

$$
= \overline{f}(T^{-1}(y))
$$

$$
= \overline{f} \circ T^{-1}(y).
$$
From the formulas $\Phi = \chi_X^{-1} \circ \Phi \circ \chi_X$, we get that $\Phi(f) = (\overline{\mathcal{T}} \circ T^{-1})|_Y$ for all $f \in \text{Lip}^1_+(X)$.

(2) \implies (1). If $T : (X, d) \to (Y, d')$ is an isometric isomorphism of groups, then clearly the map $\overline{\Phi}$ defined by $\overline{\Phi}(f) := \overline{\mathcal{T}} \circ T^{-1}$ for all $\overline{\mathcal{T}} \in \text{Lip}^1_+(X)$, gives an isometric isomorphism from $(\text{Lip}^1_+(X), \oplus, \rho)$ onto $(\text{Lip}^1_+(Y), \oplus, \rho)$. Thus, the map $\Phi := \chi_X^{-1} \circ \Phi \circ \chi_X$ gives an isometric isomorphism from $(\text{Lip}^1_+(X), \oplus, \rho)$ onto $(\text{Lip}^1_+(Y), \oplus, \rho)$. Now, it clear that $\Phi(f) = (\overline{\mathcal{T}} \circ T^{-1})|_Y$ for all $f \in \text{Lip}^1_+(X)$.

\[\square\]

Remark 1. (1) The description of all isomorphisms seems to be more complicated than the representations of the isometric isomorphisms. Here is two examples of isomorphisms which are not isometric.

(a) The map $\Phi : \text{Lip}^1_+(X) \to \text{Lip}^1_+(X)$ defined by $\Phi(f) = f + \inf_X(f)$ for all $f \in \text{Lip}^1_+(X)$, is an isomorphism of monoids which respect the order but is not isometric for ρ (the proof is similar to the proof of [Theorem 7., [2]]). Note that we always have $\inf_X(f \oplus g) = \inf_X(f) + \inf_X(g)$.

(b) The map $\Phi : \text{Lip}^1_+(\mathbb{R}) \to \text{Lip}^1_+(\mathbb{R})$ defined by $\Phi(f)(x) = f(x + \inf_X(f))$ for all $f \in \text{Lip}^1_+(\mathbb{R})$ and all $x \in \mathbb{R}$, is an isomorphism but not isometric for ρ.

(2) Following the proof of Theorem 1 and changing "1-Lipschitz function" by "1-Lipschitz and convex function", we get a positive answer to the problem 2. in [2].

2 The group of units.

In order that the inf-convolution of two functions f and g takes finit values i.e $f \oplus g > -\infty$, we need to assume that f and g are bound from below. Since, we work with Lipschitz maps, for simplicity, we assume in this section, that (X, d) is a bounded invariant metric group. By $\text{Lip}^1_+(X)$ we denote the set of all 1-Lipschitz map f from X into \mathbb{R} such that $\inf_X(f) = 0$. By $\text{Lip}^1(X)$ (resp. $\text{Lip}(X)$,) we denote the set of all 1-Lipschitz map (resp. the set of all Lipschitz map) defined from X to \mathbb{R}. We have that

$$\text{Lip}^1_0(X) \subset \text{Lip}^1_+(X) \subset \text{Lip}^1(X) \subset \text{Lip}(X).$$

Proposition 1. Let (X, d) be a bounded invariant metric (abelian) group. Then, the sets $\text{Lip}^1_0(X)$, $\text{Lip}^1_+(X)$ and $\text{Lip}^1(X)$ are (abelian) monoids having δ_e as identity element and $\text{Lip}(X)$ is a (abelian) semigroup.

Proof. The proof is similar to [Proposition 1., [1]]. \[\square\]

Note that since (X, d) is bounded, each function $f \in \text{Lip}^1(X)$ (resp. $f \in \text{Lip}(X)$) is bounded and so $d_\infty(f, g) := \sup_{x \in X} |f(x) - g(x)| < +\infty$ for all $f, g \in \text{Lip}^1(X)$ (resp. $f, g \in \text{Lip}(X)$). In this case, from [Lemma 1., [1]], we have that

$$\rho = \frac{d_\infty}{1 + d_\infty}$$

on $\text{Lip}(X)$. We also consider the following metric:

$$\theta_\infty(f, g) := d_\infty(f - \inf_X(f), g - \inf_X(g)) + |\inf_X(f) - \inf_X(g)|, \ \forall f, g \in \text{Lip}(X).$$

9
Proposition 2. Let \((X, d)\) be a bounded invariant metric group. Then, the following map

\[
\tau : (\text{Lip}^1(X), \theta_\infty) \rightarrow (\text{Lip}^1_0(X) \times \mathbb{R}, d_\infty + |.|)
\]

\[
f \mapsto (f - \inf_X f, \inf_X f).
\]

is an isometric isomorphism of monoids, where \(\text{Lip}^1_0(X) \times \mathbb{R}\) is equipped with the operation \(\oplus\) defined by \((f, c) \oplus (f', c') := (f + f', c + c')\).

Proof. Clearly, \((\text{Lip}^1_0(X) \times \mathbb{R}, \oplus)\) is a monoid having \((\delta_e, 0)\) as identity element, since \((\text{Lip}^1_0(X), \oplus)\) is a monoid having \(\delta_e\) as identity element. It is also clear that \(\tau\) is a monoid isomorphism. Now, \(\tau\) is isometric by the definition of \(\theta_\infty\). It follows that \(\tau\) is an isometric isomorphism.

The following proposition gives an alternative way to consider the group completion of invariant metric groups. Recall that if \((M, \cdot)\) is a monoid having \(e_M\) as identity element, the group of units of \(M\) is the set

\[
\mathcal{U}(M) := \{ m \in M/ \exists m' \in M : m \cdot m' = m' \cdot m = e_M \}.
\]

The symbol \(\cong\) means isometrically isomorphic as groups. We give below an analogue to [Corollary 1., [1]], for each of the spaces \(\text{Lip}^1_0(X), \text{Lip}^1(X)\) and \(\text{Lip}(X)\). Note that in the part (1) of the following proposition as in [Corollary 1.,[1]], we do not need to assume that \(X\) is bounded.

Proposition 3. Let \((X, d)\) be a bounded invariant metric group. Then, we have that

1. \(\mathcal{U}(\text{Lip}^1_0(X), d_\infty) = (\mathcal{U}(\text{Lip}^1_0(X)), d_\infty) \cong (\overline{X}, d)\),

2. \(\mathcal{U}(\text{Lip}^1(X), \theta_\infty) \cong (\overline{X} \times \mathbb{R}, d + |.|)\).

3. The group \(\mathcal{U}(\text{Lip}^1(X))\) is the maximal subgroup of the semigroup \(\text{Lip}(X)\), having \(\delta_e\) as identity element.

Proof. (1) The fact that \((\mathcal{U}(\text{Lip}^1_0(X)), d_\infty) \cong (\overline{X}, d)\), is given in [Corollary 1., [1]]. On the other hand, since, \(\mathcal{G}(X) \subset \mathcal{U}(\text{Lip}^1_0(X)) \subset \mathcal{U}(\text{Lip}^1_0(X))\) and since \(\mathcal{G}(X) \cong \overline{X}\) (see [Lemma 2., [1]]) we get that \(\mathcal{U}(\text{Lip}^1_0(X)) = \mathcal{U}(\text{Lip}^1_0(X))\). Let us prove the part (2). Indeed, since \(\tau\) (Proposition 2) is an isometric isomorphism, it sends isometrically the group of units onto the group of units. Hence, from Proposition 2 we have

\[
(\mathcal{U}(\text{Lip}^1(X)), \oplus, \theta_\infty) \cong (\mathcal{U}(\text{Lip}^1_0(X) \times \mathbb{R}), \oplus, d_\infty + |.|).
\]

Since \(\mathcal{U}(\text{Lip}^1_0(X) \times \mathbb{R}) = \mathcal{U}(\text{Lip}^1_0(X)) \times \mathbb{R}\), the conclusion follows from the first part. For the part (3), let \(f\) be an element of the maximal group having \(\delta_e\) as identity element. Then, \(f \oplus \delta_e = f\) and so it follows that \(f\) is 1-lipschitz map i.e \(f \in \text{Lip}^1(X)\). Thus, \(f \in \mathcal{U}(\text{Lip}^1(X))\).

3 The algebraic case.

Let \(G\) be an algebraic group having \(e\) as identity element and let \(f : G \rightarrow \mathbb{R}^+\) be a function, we denote \(\text{Osc}(f) := \sup_{t, t' \in G} |f(t) - f(t')|\) and by \(G^*\) we denote the following set:

\[G^* := \{ f : G \rightarrow \mathbb{R}^+ / \text{Osc}(f) \leq 1 \} \]
Note that the set G^* is just the set $\text{Lip}_1^+(G)$ where (G, disc) is equipped with the discrete metric "disc", which is an invariant complete metric. So, (G^*, \oplus) is a monoid having δ_e as identity element, where $\delta_e(\cdot) := \text{disc}(\cdot, e)$ i.e. $\delta_e(e) = 0$ and $\delta_e(t) = 1$ for all $t \neq e$. Observe also that two algebraic groups G and G' are isomorphic if and only they are isometrically isomorphic when equipped respectively with the discrete metric. Thus, we obtain that the algebraic group structure of any group G is completely determined by the algebraic monoid structure of (G^*, \oplus).

Corollary 2. Let G and G' be two groups. Then the following assertions are equivalent.

1. the groups G and G' are isomorphic
2. the monoids (G^*, \oplus, ρ) and (G'^*, \oplus, ρ) are isometrically isomorphic
3. the monoids (G^*, \oplus, d_∞) and (G'^*, \oplus, d_∞) are isometrically isomorphic (where $d_\infty(f, g) := \sup_{t \in G} |f(t) - g(t)| < +\infty$, for all $f, g \in G^*$)
4. the monoids (G^*, \oplus) and (G'^*, \oplus) are isomorphic.

Moreover, $\Phi : (G^*, \oplus, \rho) \rightarrow (G'^*, \oplus, \rho)$ (resp. $\Phi : (G^*, \oplus, d_\infty) \rightarrow (G'^*, \oplus, d_\infty)$) is an isometric isomorphism of monoids, if and only if there exists an isomorphism of groups $T : G \rightarrow G'$ such that $\Phi(f) = f \circ T^{-1}$ for all $f \in G^*$.

Proof. Since $G^* = \text{Lip}_1^+(G)$, where G is equipped with the discrete metric and since G and G' are isomorphic if and only if (G, disc) and (G', disc) are isometrically isomorphic, then the part (1) \iff (2) is a direct consequence of Theorem 1. The part (2) \implies (3) follows from the fact that $\rho = \frac{d_\infty}{1 + d_\infty}$ by using [Lemma 1, [1]]. The part (3) \implies (4) is trivial. Let us prove (4) \implies (1). Since an isomorphism of monoids sends the group of unit onto the group of unit, and since the group of unit of G^* (resp. of G'^*) is isomorphic to G (resp. to G') by Proposition 3, we get that G and G' are isomorphic. The last assertion is given by Theorem 1.

As mentioned in Remark 1, if $T : G \rightarrow G'$ is an isomorphism, then $\Phi(f) := f \circ T^{-1} + \inf_G(f)$ for all $f \in G^*$ gives an isomorphism of monoids between G^* and G'^* which is not isometric.

In the following example, we treat the case where G is a finite group.

Examples 1. Let $n \geq 1$ and (\mathbb{R}^n, d_∞) the usual n-dimentional space equiped with the max-distance. The subsets M^n_+ and M^n of \mathbb{R}^n are defined as follows

$$M^n_+ := \{(x_k)_{1 \leq k \leq n} \in \mathbb{R}^n_+ \mid |x_i - x_j| \leq 1, \quad 1 \leq i, j \leq n\}.$$

$$M^n := \{(x_k)_{1 \leq k \leq n} \in \mathbb{R}^n \mid |x_i - x_j| \leq 1, \quad 1 \leq i, j \leq n\}.$$

Let $G := \{g_1, g_2, \ldots, g_n\}$, be a group of cardinal n, where g_1 is the identity of G. We define the law \star_G on \mathbb{R}^n depending on G as follows: for all $x = (x_k)_k, y = (y_k)_k \in \mathbb{R}^n$,

$$x \star_G y = (z_k)_{1 \leq k \leq n},$$

where for each $1 \leq k \leq n$,

$$z_k := \min\{x_i + y_j / g_i \cdot g_j = g_k, 1 \leq i, j \leq n\}.$$
Then,

1. The set \((\mathbb{R}^n, \star_G)\) has a semigroup structure (and is abelian if \(G\) is abelian).

2. The sets \((M^n_+, \star_G)\) and \((M^n, \star_G)\) are monoids having \(e = (0, 1, 1, ..., 1)\) as identity element.

3. Let \(G\) and \(G'\) be two groups of cardinal \(n\). The monoids \((M^n_+, \star_G)\) and \((M^n_+, \star_{G'})\) are isomorphic if and only if the groups \(G\) and \(G'\) are isomorphic.

4. We have that
 \[
 \mathcal{U}(M^n_+) \cong G, \\
 \mathcal{U}(M^n) \cong G \times \mathbb{R}.
 \]
 Moreover, the maximal subgroup of \((\mathbb{R}^n, \star_G)\) having \(e\) as identity element is isomorphic to the group \(G \times \mathbb{R}\).

5. We have that
 \[
 Is_m(M^n_+) \cong \text{Aut}(G).
 \]

The properties (1) – (5) follows easily from the results of this note. It suffices to see that the space \(\mathbb{R}^n\) can be identified to the space \(\text{Lip}(G)\) of all real-valued Lipschitz map on \((G, \text{disc})\). Indeed, the map

\[
i : \text{Lip}(G) \rightarrow \mathbb{R}^n \\
i(f) \mapsto (f(g_1), ..., f(g_n))
\]

is a bijective map. Then, we observe that the operation \(\star_G\) on \(\mathbb{R}^n\) is just the operation \(\oplus\) on \(\text{Lip}(G)\). On the other hand, the subset \(M^n_+\) is identified to \(\text{Lip}^1_+(G)\) and \(M^n\) is identified to \(\text{Lip}^1(G)\).

References

