Bases and linear transforms of TU-games and cooperation systems

Abstract : We study linear properties of TU-games, revisiting well-known issues like interaction transforms, the inverse Shapley value problem and potentials. We embed TU-games into the model of cooperation systems and influence patterns, which allows us to introduce linear operators on games in a natural way. We focus on transforms, which are linear invertible maps, relate them to bases and investigate many examples (Möbius transform, interaction transform, Walsh transform and Fourier analysis etc.). In particular, we present a simple solution to the inverse problem in its general form: Given a linear value Φ and a game v, find all games v ′ such that Φ(v) = Φ(v ′). Generalizing Hart and Mas-Colell's concept of a potential, we introduce general potentials and show that every linear value is induced by an appropriate potential .
Type de document :
Article dans une revue
International Journal of Game Theory, Springer Verlag, 2016, 45 (4), pp.875-892. 〈10.1007/s00182-015-0490-x〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01404509
Contributeur : Michel Grabisch <>
Soumis le : lundi 28 novembre 2016 - 17:47:35
Dernière modification le : mardi 27 mars 2018 - 11:48:04
Document(s) archivé(s) le : lundi 27 mars 2017 - 09:18:19

Fichier

PotentialsValues6.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Ulrich Faigle, Michel Grabisch. Bases and linear transforms of TU-games and cooperation systems. International Journal of Game Theory, Springer Verlag, 2016, 45 (4), pp.875-892. 〈10.1007/s00182-015-0490-x〉. 〈hal-01404509〉

Partager

Métriques

Consultations de la notice

144

Téléchargements de fichiers

215