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Abstract

This paper presents a model of �rm localization in which the intrinsic advantages of
regions are disentangled from localized externalities, while this latter force is allowed to
have a quadratic shape. We verify through inferential analysis whether the quadratic
component of localized externalities is statistically di�erent from zero. Such term can
re�ect more-than-linear positive feedbacks as well as congestion e�ects, so that the sign of
the interdependencies stemming from localization is not assumed a priori to be positive.
Our main result is that the quadratic term is virtually never statistically di�erent from
zero across Italian sectors observed at the scale of commuting zones, so that localized
externalities seem to be well approximated by a linear speci�cation.
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1 Introduction

The uneven spatial distribution of some scarcely mobile factors of production may also drive
the �rms that use such factors to mimic their spatial distribution. For example, extractive
industries may be clustered around mines, gushers, or gas �elds, while being virtually absent
where these natural resources are unavailable. Many other industries, however, are also strongly
concentrated in space despite not being bound to immobile factors of production. In these
cases, clustering is generally explained through the self-reinforcing dynamics stemming from
di�erent types of interdependencies in the localization choices of �rms. In particular, these
interdependencies can be categorized according to the role that market mechanisms play in
their unfolding (see Scitovsky, 1954). When the choice of a �rm enters the production problem
of other �rms by a�ecting the prices thereby involved, then the interdependence among �rms
is classi�ed as a pecuniary externality. Otherwise, when the choice of a �rm a�ects directly
and exclusively the factor inputs of other �rms, then the interdependence is characterized
as technological externality. There is a strictly practical reason for why this taxonomy is
of interest especially when the interdependencies at stake are spatially bounded. Namely,
if such interdependencies stand at the root of the self-reinforcing dynamics that allow the
formation of spatial clusters, then policy-makers may well be interested in unleashing localized
externalities so as to promote regional development. Yet, the policies that may be thought
to govern pecuniary externalities di�er from those that could target technological externalities
(see Martin and Sunley, 1996, Ottaviano, 2003).

Pecuniary externalities can lead to self-reinforcing dynamics and thus to spatial agglomer-
ation through a process of cumulative causation based on the accumulation of local demand
(see Myrdal, 1957). As an example, take two perfectly symmetrical regions. If one �rm moves
from one region to the other, local wages decrease in the region of departure and increase in
the region of destination, thus leading workers to move in the same direction as the �rm. In
turn, workers are also customers, so that consumer demand rises in the destination region. In
this sense, the localization choice of a single �rm ends up a�ecting all other local �rms through
market demand, thus constituting a pecuniary externality. This mechanism may keep on at-
tracting additional �rms as long as the gain from an expansion in local demand outstrips the
loss associated with �ercer local competition. Hence, under suitable transportation costs, im-
perfectly competitive markets, and economies of scale, the initial relocation of one �rm calls for
other �rms to move in the same direction and gives rise to spatial concentration (see Krugman,
1991a). In this framework, the geography of production can be characterized in terms of core
and periphery. This is especially the case since the attractive pull of demand actsacross sec-
tors, thus suggesting that the resulting agglomeration should look like a diversi�ed city rather
than as a specialized cluster.

Yet, specialized clusters do exist in areas that are neither particularly populated nor espe-
cially well-connected to markets. Only a limited part of these agglomerations can be explained
through the dependence of one sector on some immobile factor inputs, as the contribution of
broadly-meant natural advantages to spatial concentration is empirically modest across sectors
(see Ellison and Glaeser, 1999). These specialized clusters could then stem from pecuniary
externalities that take place with the co-localization of �rms belonging to vertically-integrated
industries, as discussed by Venables (1996). Also in this case, however, the empirical evidence
suggests that the co-agglomeration between industries with strong upstream-downstream ties is
limited (see Ellison and Glaeser, 1997). Therefore, something else is likely to be at playwithin
sectors.

Sector-speci�c technological externalities represent an alternative source of self-reinforcing
dynamics that may contribute to explain the riddle of the spatial distribution of �rms. A typical
example of how these untraded interdependencies may unfold locally is represented by the case
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of knowledge spillovers. That is, some of the private productive knowledge incorporated in �rms
spills into a common knowledge pool whose availability is bounded in space, due to the fact that
knowledge is at least partly tacit and thus not perfectly transferable. In these circumstances,
�rms have an incentive to localize where a larger share of other �rms are already settled, so as
to bene�t from the vaster knowledge pool that is available only locally (see Marshall, 1890, bk
IV, ch.X). What makes this mechanism sector-speci�c is that �rms are interested in acquiring
knowledge that is related to their own production process, so that they will co-localize with
similar� rather than with generic � �rms. In this sense, localized technological externalities
stemming from knowledge spillovers can make sense of specialized clusters.

On the previous special issue of this journal, Bottazzi and Gragnolati (2015) provide a
methodology to disentangle and measure the determinants of the spatial distribution of �rms.
Their work focuses in particular on singling out and comparing the strength of localized ex-
ternalities acting within sectors against the pull of intrinsic regional characteristics. The idea
is that if a particular sector is very concentrated where other sectors are not, this may stem
either from particular local advantages or from sector-speci�c externalities. Once the former
are controlled for, the latter can then be properly measured. In particular, the intrinsic at-
tractiveness of locations is de�ned by a number of controls possibly actingacrosssectors, such
as local demand, industrial variety and infrastructural advantages; yet, the controls also in-
clude a sector-speci�c dummy indicating the presence of an industrial district. In this way, the
measurement of within-sector externalities is meant to be cleared from those pecuniary e�ects
that may act across sectors � such as consumer demand � and from those that may be at least
partly sector-speci�c � such as specialized labor market pooling. Hence, the type of e�ect that
remains to be captured on the side of localized externality lends itself to be interpreted as a
technological externality.

Bottazzi and Gragnolati (2015) base their analysis on Italian plant data for a variety of
manufacturing and service sectors as observed in year 2001 at the scale of commuting zones.
Their main result is that the pull of externalities and population size are by far the most
important determinants of �rm localization, and these two drivers are comparable with each
other in terms of their magnitudes. In fact, externalities are found to have an even stronger
e�ect than population size across most sectors. If one interprets sector-speci�c externalities
as being mostly technological, such a result contrasts to some extent with the limited weight
that technological externalities have received, for instance, in the context of the earlier core-
periphery models (see Fujita et al., 2001). For example, Krugman (1991b, p.54 and pp-61�62)
states:

[W]hile I am sure that true technological spillovers play an important role in the localiza-
tion of some industries, one should not assume that this is the typical reason�even in the
high technology industries themselves [p.54].

[...] An accident led to the establishment of the industry in a particular location, and
thereafter cumulative processes took over. [...] What the historical record shows us are
two things. First, such cumulative processes are pervasive [...]. And second, Marshall's
�rst two reasons for localizations, labor pooling and the supply of specialized inputs, play a
large roleeven when pure technological externalities seem unlikely[pp.61�62, italics added].

By contrast, the results discussed in Bottazzi and Gragnolati (2015) suggest that technological
externalities may hardly be considered as �unlikely�. In fact, they should be regarded as the
rule in the economy, rather than as an exotic exception concerning only high-tech sectors (see
Bottazzi and Dindo (2013) for a model investigating the role of technological externalities in
the context of New Economic Geography core-periphery framework).

There is, however, at least one reason to suspect that such a conclusion would overestimate
the strength of technological externalities in determining �rm localization. Namely, Bottazzi
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and Gragnolati (2015) base their estimates on a linear speci�cation of externalities. In their
framework, the individual advantage for a �rm to choose a location increases proportionally to
the number of other �rms in the sector that are already placed in the same location. Exter-
nalities, however, may well be non-linear. In its �weaker� declination, non-linearity would still
preserve monotonicity. In the case of localized knowledge spillovers, for instance, the advan-
tages from having an additional neighbor may increase up to a critical threshold and then keep
stable. In this case, externalities are non-decreasing and thus monotone, but they are non-
linear. In a �stronger� declination of non-linearity, instead, monotonicity is lost. For example,
the advantages of having an additional neighbor may increase up to a critical threshold and
decrease beyond it, for instance because �rms may incur into growing search costs to select and
exploit the relevant pieces of productive knowledge. In this case, �rm localization is subject to
congestion and externalities are non-monotone (see Fagiolo, 2005, for an interpretation based
on endogenous network formation).

The present work extends the localization model originally presented by Bottazzi et al.
(2007) by allowing for quadratic externalities. In carrying out such an extension, two key
characteristics of the original framework are entirely preserved. First, it remains possible to
disentangle localized externalities from the e�ect of other location-speci�c variables. Second,
the localization choices of �rms converge in the long-run toward an ergodic invariant distri-
bution. In this sense, the model prescribes the same stochastic equilibrium regardless of the
initial distribution of �rms across regions. On the other hand, the introduction of non-linear
externalities prevents us from deriving the equilibrium distribution in closed form. Hence, we
apply numerical simulations to derive the equilibrium distribution of �rms across regions. Such
a theoretical distribution is then compared with the observed one through� 2 minimization,
so as to estimate its unknown the parameters. More speci�cally, the main objective of this
procedure is to test whether the quadratic externality coe�cient is statistically di�erent from
zero. If not, localized externalities would result that are su�ciently well-approximated by a
linear form; otherwise, they are better approximated by a quadratic shape. Notably, depend-
ing on the sign and magnitude of the estimated quadratic coe�cient, the model allows one to
accommodate both monotone and non-monotone shapes of externalities. If the quadratic term
is estimated to be statistically di�erent from zero and su�ciently negative, a region can reach
the point in which the addition of one extra �rm decreases the probability for that same region
to attract others �rms.

2 Model

The localization choices of �rms depend on the intrinsic features of regions as well as on the
distribution of other �rms across regions. A class of stochastic models which is naturally suited
to capture both dependencies is that of �generalized� Polya urn schemes. These models have
been applied, for instance, to the description of phenomena like technological adoption and
di�usion (see the early contributions in Arthur et al. (1987) and Dosi et al. (1994)). In those
applications, however, the ��xed e�ects� provided by the intrinsic features of the objects of
choice tend to progressively disappear, be it in time or space. They are as such less useful to
describe cases of persistent �uctuations. Moreover, they often present non-ergodic dynamics,
which imply a substantial impossibility to estimate their parameters from the data. For these
reasons, Bottazzi and Secchi (2007) and Bottazzi et al. (2008) modi�ed the original urn scheme
framework toward a Markov process known in the physics literature as Ehrenfest-Brillouin
(E-B) model. The E-B model can be obtained under rather general conditions from discrete
utility theory, assuming a linear externality e�ect very similar to the one adopted by Brock and
Durlauf (2001a,b). The equilibrium distribution entailed by the E-B model is in fact equivalent
to a �nite time Polya process; but, being ergodic, it can be directly estimated from the data.
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Notably, ergodicity allows one to overcome the concerns on identi�cation presented by Blume
et al. (2011). The present paper introduces an extension of the E-B model to include quadratic
externalities while still allowing one to estimate them in high dimensional problems.

A population of N �rms has to choose amongL regions, and each generic �rmi chooses
location l with probability

pl � al + bnl + cn2
l ; (1)

wherenl is the number of �rms already present inl , a = ( a1; : : : ; aL ) is anL-dimensional vector
assumed with positive components andb � 0 and c are scalars. The probabilistic outcome of
the choice is meant to capture the heterogeneity of �rms and the consequently idiosyncratic
nature of their preferences. One has to think of these probabilities as an average across all
di�erent �rms composing the economy. Expression (1) has two distinct components: on the
one hand, terms such qsal capture the intrinsic attractiveness of the di�erent locations; and,
on the other, the termnl establishes an interdependence between the choice of �rmi and those
made by other �rms, thus capturing externalities.

When c = 0, the probability in (1) is linear in nl and the invariant distribution of the model
is the multivariate Polya distribution (see Bottazzi and Secchi, 2007). In this case, the existence
of a stochastic equilibrium can be demonstrated either by proving the attainment of a detailed
balance condition or by studying the convergence of sequential choices (see Scalas et al., 2006).
But when c 6= 0, (1) is not linear and one cannot analytically exploit the detailed balance
condition to obtain the explicit expression for the invariant distribution. Therefore, the second
approach is used instead by assuming a sequence of choices and then studying numerically their
convergence properties.

The sequence of individual choices is structured so that, at each time step, one �rm is
selected at random to revise its choice. In general, alternative non-random rules could be
adopted to select who is called on to operate a revision, thus a�ecting the dynamics of the
model. In the present case, however, the aim is to keep the structure of selection as agnostic
as possible precisely by attributing to all �rms an equal probability to be selected for choice
revision. Under this premise, the evolution of the system from con�gurationn at time t to
con�guration n 0 at t + 1 with n0

m = nm � 1 , n0
l = nl + 1 and n0

k = nk for any k 6= l; m is
de�ned in terms of the transition probability Pf n 0

t+1 jn tg. Such probability corresponds to the
intersection between the event �Firm revises its previous choice of regionm� (event B) and the
event �Firm chooses regionl� (event A). That is, the conditional probability reads

Pf n 0
t+1 jn tg = Pr f Firm revises its choicemg�

� Prf Firm chooses regionl j Firm revise its choicemg :

Since the �rm that is called on to revise its current choicem is selected at random, it follows
that Prf Bg = nm=N. This probability must be then multiplied by the probability pl to select
region l, as given in (1), conditional to the fact that the �rm is no longer among those opting
for m, that is without considering self-interaction

Pf n 0jn g =
nm

N
al + b(nl � � l;m ) + c(nl � � l;m )2

P L
i =1 f ai + b(ni � � i;m ) + c(ni � � i;m )2g

; (2)

where the Kronecker term� l;m is 1 if l = m and 0 otherwise. The term� l;m is what makes
the above expression aconditional probability. With the previous assumptions one has the
following:

Proposition 2.1. Assume that al , b and c are such that for any occupancy vectorn the
probability of choosing any location is positive, that ispl (n ) > 0; 8l. Then, the Markov chain
is irreducible.
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Proof. For any system con�guration n , let m be a region such thatnm > 0 and consider
the con�guration n 0 = n + � l � � m obtained by adding one �rm among those who chosel
while removing one �rm from those who chosem. Then, the one-step probabilityPf n 0jn g
to move from con�guration n to con�guration n 0 is given by equation 2. Since by hypothesis
Pf n 0jn g > 0, any con�guration can be reached from any other con�guration in a �nite number
of steps. The statement follows.

Since the Markov chain associated with the non-linear model is irreducible, it is also ergodic.
Namely, there exists a unique distribution� (n ; a; b; c) which depends on the set of parame-
ters (a; b; c), such that for any realization f n tg of the process and irrespectively of the initial
con�guration n 0 it is:

lim
T !1

1
T

TX

t=0

� n t ;n = � (n ; a; b; c) ; (3)

where the Kronecker term� n t ;n is 1 if n t = n and 0 otherwise. Equation 3 is precisely the
method adopted here to compute the distribution� (n ; a; b; c).1

Notably, Proposition 2.1 implies a careful investigation of the region of the parameter space
in which the positivity condition of the transition probability is ful�lled. This is indeed the
only region in which it is guaranteed that numerical time averages converge asymptotically to
the invariant distribution of the process. In this respect, it is important to clarify why the
parameter b can be safely assumed to be non-negative in the context of the present analysis.
In fact, the model will be used here to test the presence of quadratic externalities in �rm
localization. Such externalities, however, have already been estimated to be strongly positive
under a linear speci�cation. In particular, Bottazzi and Gragnolati (2015) have done so using
exactly the same data that will be used below in Section 4. Crucially, their analysis compares
two alternative nested models which di�er from each other only for the presence of the linear
externality term. In their procedure of model selection, the model with linear externalities
outperform systematically the model without externalities, even after penalizing parametric
numerosity. For this reason, it is safe to assume thatb � 0 in the speci�c context of the present
work. Conversely, more attention needs to be placed on the behavior of the model for varying
values ofc.

To this purpose, Figure 1 shows the behavior ofpl as a function ofnl for varying values ofc.
Notwithstanding the constraints imposed onc to guaranteepl � 0, a wide range of behaviors can
still be observed. Whenc = 0 as in Figure 1a, the probabilitypl grows linearly in nl according
to equation (1), thus delineating the standard Ehrenfestâ€“Brillouin model. Conversely, asc
moves away from 0, as in Figures 1b�1e, the probabilitypl becomes a non-linear function of
nl . At least two further aspects of Figure 1 are worth pointing out. First, havingc < 0 is not
a su�cient condition for pl (nl ) to be non-monotone. In fact, there exist negative values ofc
for which pl is increasing innl , as shown in Figures 1d-1e. Second, the magnitude and sign
of the derivative @pl=@nl will depend onnl . These two aspects imply that it is not trivial to
determine whether individual choices are a�ected by a congestion e�ect. De�ning congestion as
@pl=@nl < 0, such condition occurs only for su�ciently negative values ofc and for su�ciently
high values ofnl , as shown in Figure 1f. In this sense, if occurring at all, congestion is not a
general condition a�ecting all regions, but rather a condition that would be speci�c to some
regions according to their actual occupancy.

Before moving on to the inferential analysis, it is worth making a remark on the applicability
of the present model to empirical data. A time tick in the model corresponds to a localization
choice rather than to a unit of real time; hence, the equilibrium distribution� (n ; a; b; c) de-
scribes the state of the system after the occupancy vector has been revised a su�ciently large

1Di�erently from the analytical solution of the model, the numerical approach does not require that the
Markov chain is reversible and does not exploit the detailed balance condition.
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(a) c = 0 (b) c = j2 � cmin j (c) c = j2 � cmin j � 101

(d) c = �j cmin
2 j (e) c = �j 0:98� cmin j (f) c = cmin = � 5 � 10� 3

Figure 1: The probability pl as a function ofnl for varying values of c.

Note: The common parameters of these examples areL = 2 , N = 100, a1 = 1 , a2 = 2 , and b = 0 :5.

number of times. Practically, this occurs both when incumbents move their establishments
and in the case of genuine entry and exit. Considering that the gross yearly turnover rate in
any sector is typically between 15% and 20% in OECD countries (see Bartelsman et al., 2005,
p.378), the real time needed to reach the invariant distribution may well be relatively short.

3 Inferential analysis

Under the assumption that the model described above represents the true data-generating pro-
cess, its estimation consists in selecting the set of parameters(a; b; c) that generate the invariant
distribution for the occupancy vectorn (a; b; c) which is most statistically �compatible� with
the observed occupancy vectorn o. Speci�cally, the parameters are estimated by minimizing
the chi-square statistic of the implied invariant distribution of occupancy vectors� (a; b; c) with
respect to the observed occupancy. The �categorization� required by the chi-square statistics is
obtained by binning the locations according to their occupancy to obtain a binned occupancy
distribution. More precisely, this is how the procedure works.2

Let f (n) denote the number of regions chosen byn �rms. This can be either the number
observed in the data or the expected number implied by the invariant distribution of the process.
Thus, f (0) is the number of regions chosen by zero �rms,f (1) is the number of regions selected
exactly by one �rm, and so on. The sum of these quantities is equal to the number of available
regions, that is

P N
n=0 f (n) = L. Given a �nite partition of the integers, that is a set of increasing

integer numbersC = f y1; y2; : : : ; yJ g, let hj with j = 0; 1; : : : ; J denote the number of regions

2The use of maximum likelihood might appear as more appropriate. However, it poses enormous numerical
di�culties as the simulation length necessary to assign reliable probabilities to all system con�gurations soon
becomes soon unfeasible with the increase of the number of locations and �rms. This problem is e�ciently
overcome by considering a binned statistics and reverting to chi-square minimization. Dubious readers are
reminded that chi-square minimization in general possesses an e�cient asymptotic behavior and, in any case,
it is not more severely a�ected by small sample biases than maximum likelihood.
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with occupancy in the class (or bin)[yj ; yj � 1), that is:

hj =
yj +1 � 1X

n= yj

f (n)

with y0 = 0 and yJ +1 = + 1 . The setf h0; h1; : : : ; hJ g de�nes the binned occupancy distribution
of the regions with respect to their occupancy. Notice that

P J
j =0 hj = L. Keeping �xed the

partitions C, one can compute the observed occupancy distributionho using the observed
distribution of �rms across regions and also the theoretical occupancyh� (a; b; c) implied by the
invariant distribution of the occupancy vector� (a; b; c). Then the parameters can be estimated
solving the problem

(â; b̂;ĉ) = argmin
a;b;c

(

� 2(h� (a; b; c); ho) =
JX

j =0

(h�
j (a; b; c) � h0

j )2

h�
j (a; b; c)

)

: (4)

To improve the e�ciency of the method, we de�ne the partition C in such a way that the
di�erent bins contain a roughly constant number of regions when the observed occupancy is
considered. This implies that the histogram of the observed binned occupancy distribution is
roughly �at (see Figure 2b).

When c = 0, the estimation procedure can be carried out more easily because the theoretical
occupancy distribution can be directly obtained from the analytic expression of the invariant
distribution � (Bottazzi and Gragnolati, 2015). In the general case, however, the invariant
distribution is not known and one has to revert to numerical methods, speci�cally Monte Carlo
techniques, to obtain an estimate of the theoretical occupancy distribution.3 Since the main
interest here is to test whether or not the null hypothesisH0 : c = 0 can be statistically rejected,
the following exposition we will make explicit reference only to the parameterc while assuming
that a and b are known, so as to simplify the notation. Hence, the invariant distribution
predicted by the model will be labeled as� (c) and h� (c) is the implied occupancy distribution.
In fact, the values ofa and b are initialized according to the estimates obtained underc = 0
and are successively re-estimated if the null hypothesisH0 : c = 0 is rejected (see below).

As usual in inferential analysis, the estimation of the unknown parameterc rests on two
steps. First, one searches for the particular valuêc that generates the occupancy distribution
which is closest, on average, to the observed occupancyho according to the chi-square statistics.
The search takes place within a predetermined set[cmin ; cmax ], which contains0.4 Second, the
null hypothesisH0 : c = 0 undergoes statistical testing against the alternativeH1 : c 6= 0. This
means one has to evaluate whether the null hypothesisc = 0 can be rejected, at a given level
of statistical signi�cance, based on the observationn o. To understand better the estimation
procedure, it is convenient to go through its illustration in Figure 3.

The �rst step consists in deriving the point estimateĉ as illustrated in the upper-left panel
of Figure 3(a). Starting from the observed con�gurationn o, the model is simulated withK
di�erent values of c 2 [cmin ; cmax ]. For each value ofc, the model is run for an initial number
of stepstmin to eliminate transient e�ects (see Section 4 below for further discussion ontmin ).

3The Monte Carlo techniques adopted here are characterized by very poor performances when a maximum
likelihood approach is adopted. The problem arises every time the attractiveness of two locations is similar.
In this case any redistribution of �rms across locations generates a variation in the likelihood function which
is, however, spurious. Washing away this spurious e�ect requires a computation time which is unfeasible for
practical applications. For more details, see Bottazzi and Vanni (2014).

4To guarantee the convergence of the algorithm and improve its speed, the initial search interval should be
tuned on the initial values of the parameters a and b. Essentially, one has to avoid that the search algorithm
probes the objective function outside its domain of de�nition. For more details, see Bottazzi and Vanni (2014).
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(a) (b) (c)

Figure 2: Binning procedure

Note: The �gure illustrates the binning procedure as operated on simulated data obtained via the Polya random
generator with the following parameters: N = 10000, L = 700, b = 1 , c = 0 , a1 = a2 = : : : = aL = 1 . The
total number of bins is J = 5 . The cumulative distribution in (a) serves to determine a set of bins such that
the corresponding occupancy classes are of equal size. The resulting histogram shown in (b) has therefore
bins of variable width. By comparing the di�erent histograms as in (c) one gathers a �rst hindsight on the
compatibility of two distributions. The sub-�gure (c) compares in particular the Polya distribution obtained
with the parameters values listed above against the distribution that is obtained by changingc = 0 to c = 1 �10� 3

and letting the system evolve for an additional � t = 1 � 105 time periods.

Then, each con�guration is further evolved for a su�ciently large number of stepsT. Hence,
K independent trajectoriesf n (tmin ; ck); n (tmin + 1; ck); : : : ; n (T; ck)g are obtained for each
c 2 f c1; : : : ; cK g. Along each trajectory the average occupancy distribution is computed:

hj (ck) =
1
T

tmin + TX

t= tmin

ht;j (ck) ; (5)

whereht;j (ck) is the occupancy distribution obtained from the occupancy vectorn (tmin +1; ck).
If tmin and T are large enough, this provide a good numerical approximation of the theoretical
distribution h� (ck). Finally, the value of ĉ is chosen solving:

ĉ(n o; tmin ; T) = argmin
c2 (c1 ;:::;cK )

�
� 2(h(c); ho)

	
: (6)

By successive re�nements of the grid one can achieve the desired precision.5

The second step consists in a statistical test of the null hypothesisH0 : c = 0 as illustrated
in the right panels of Figure 3(b-c). Initially, the model is evolved withc = 0 for s 2 (1; : : : ; S)
di�erent realizations, thus obtaining the set of replicasf n 1; : : : ; n Sg. Then, the same search
procedure described above is performed by considering each replica as the initial observed
occupancy. In this way a set of independent estimatesf ~c1; : : : ; ~cSg is obtained. From these
estimates, we build the empirical distribution functionF̂0(c). This is an approximation of the
theoretical distribution of estimated parameters under the nullc = 0, so that the two-sided
p-value of ĉ is given by F̂0(�j ĉj) + 1 � F̂0(jĉj).

If focusing on the estimate of a single parameter might have eased the exposition thus far,
the present estimation method can indeed rely on a multistage procedure to estimate multiple
parameters (for the details on the coordinate descend method, see Bertsekas, 1999, sect. 1.2.1).
Basically, such a procedure consists in estimating each unknown parameter conditional on an
initial value of the other parameter(s), thus producing an iterative cycle that stops as soon as

5The precision is however limited by the �nite computation time. As a robustness check, a minimization
algorithm based on successive parabolic interpolations was also employed, obtaining consistent results.
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observation

n o

n (tmin ; c1) : : : n (tmin ; ck) : : : n (tmin ; cK )

n (tmin + T;c1) : : : n (tmin + T;ck) : : : n (tmin + T;cK )

ĉ(n o) = argmin
c2(c1;:::;cK )

f � 2(h(c); ho)g

ĉ

model

n 1 : : : n s : : : n S

: : : : : :
: : :

: : :: : :

: : : : : :

: : :: : :

: : : : : :

: : :: : :

: : :

~c(n 1) ~c(n s) ~c(n S)

(c = 0)

c1 ck cK

� 2 � 2 � 2

Hypothesis testing

0 ĉ ~c

F̂

(a) (b)

(c)

Figure 3: Estimation approach (grid method).

convergence is reached. As an example, imagine that the vector of intrinsic advantagesa were
known, while the two externality parameters(b; c) were unknown. Starting with initial values
(b0; c0), a �rst estimate ĉ1 is obtained keeping the value ofb �xed. If ĉ1 is signi�cantly di�erent
from c0, one estimates a new valuêb1 keepingc = ĉ1 �xed. If b̂1 is signi�cantly di�erent from
b0, one re-estimatesc with b = b̂1 and so on until the procedure convergences to a couple of
values(b̂;ĉ).

4 Application

This section shows how the model described and the related estimation method detailed above
can be applied to detect the presence of a quadratic component in the localized externalities
that drive the spatial distribution of �rms. More precisely, the aim is to test whether or not
the null hypothesisH0 : c = 0 is to be rejected in the di�erent sectors.

This inferential exercise is carried out at the sectoral level using Italian census data for year
2001 (see ISTAT, 2006). To make the present results directly comparable with those of Bottazzi
and Gragnolati (2015), the number of plants by commuting zone is used to measurenl and
their same 2-3 digit NACE sectoral disaggregation is adopted. If the null hypothesisH0 : c = 0
is not rejected, then the model presented in Section 2 reduces to the Polya model with linear
externalities estimated by Bottazzi and Gragnolati (2015). In this case, their estimates will hold
as being su�ciently accurate and quadratic externalities would turn out to be redundant to
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explain the observed spatial distribution of plants. Otherwise, if the null hypothesisH0 : c = 0
is rejected, the results obtained under linearity would need to be revised.

According to the model in Section 2, the observed distribution of plants across commuting
zones is interpreted as the equilibrium outcome of discrete localization choices on the side
of �rms. Consequently, the e�ect of non-linear externalities in shaping the observed spatial
distribution of plants is detected by estimating the unknown parameterc. The analysis operates
at the sectoral level, so that each economic sector taken into account is characterized by a
varying number N of plants (reported in the second column of Table 1) located across the
L = 686 commuting zones that compose Italy. In this sense, two of the parameters of the
model in Section 2, namelyN and L, are given directly by the data. Other parameters,
instead, need to be tuned.

On the one hand,S is a precision parameter. To recall,S de�nes the number of stochastic
realizations that determine the distribution of ~c. Hence, higher values ofT and S will ensure
greater precision, but with an increasing computational cost. For the purpose of the present
application, the authors setS = 1000, which ensures a level of precision in the estimate of
p-values in the order of10� 2.

On the other hand, tmin and T are tuned in relation to the size ofN . To recall, tmin

de�nes the minimum number of time steps needed to guarantee the convergence of numerical
simulations to the invariant equilibrium distribution � = ( a; b; c), whereasT de�nes the number
of time periods over which equilibrium time averages are computed in problem (6). Therefore,
tmin can be interpreted as indicating how many times, on average, theN �rms have to revise
their individual choices in order to reach the equilibrium. As shown by Garibaldi and Scalas
(2010), the rate of approach to equilibrium as a function ofN is

r =
A=b

N (A + N � 1)
: (7)

Since the time to reach the equilibrium is of the order of1=r, one can accordingly settmin = 1=r
time steps. In parallel, the number of time periods on which to compute time averages is set
to T = 2=r, which guarantees the use of the ergodic property of the process.

For estimation to be feasible, it is also necessary to know the vector of intrinsic features
a = ( a1; : : : ; aL ). Otherwise, according to equation (1), the model would haveL + 2 unknown
parameters, thus making estimation unfeasible. To escape this problem,al can be characterized
as a function ofH � L variables that are meant to describe the regions at stake along some
relevant dimensions. As a consequence, the number of unknown parameters reduces toH +2 �
L. To make the results fully comparable with those of Bottazzi and Gragnolati (2015), their
same Cobb-Douglas form is assumed:

a(� ; x l ) = exp

 
HX

h=1

� h log(xh;l ) + � 0

!

=
HY

h=1

x � h
h;l e

� 0 : (8)

When substituting the speci�cation for a in (8) into the expression ofpl in (1), one obtains
the probability for commuting zone l to be chosen at given time step, which serves to evolve
the system as described in Section 2 and obtain the simulated trajectories that are necessary
for the numerical optimization described in Section 3. In the present application, rather than
to estimate fully each parameter of the model, our primary objective is to test whether the
addition of a quadratic externality term is statistically meaningful as compared with the linear
case. Hence, one looks particularly atc. To this purpose, one introduces a useful normalization:
by dividing numerator and denominator byb the expression for the probabilitypl of selecting
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(a) Population. (b) Sector 45-Construction . (c) Sector 19-Leather .

Figure 4: Maps of the data (year 2001).

commuting zonel becomes

pl =
a(� ;x l )

b + nl + c
bn2

l
P L

l=1
a(� ;x l )

b + nl + c
bn2

l

; (9)

where(� ; c) are the H + 1 unknown parameters to be estimated andb = 1 is set without loss
of generality.

Given the focus on non-linearity, one can then initialize the stochastic process using the es-
timates (â1=̂b; : : : ;âL =̂b) obtained under the linear Polya model to check whether the numerical
search converges elsewhere relative from where it started. Hence, the �rst step of the multi-
stage estimation procedure estimatesc conditional on the initialization values (â1=̂b; : : : ;âL =̂b)
obtained under the linear Polya andb = 1. Only if the null hypothesis H0 : c = 0 is rejected
will the multistage estimation procedure be triggered.

In general, there are multiple intrinsic features of a commuting zone that may be relevant
to �rm localization, thus entering among the H regressors that shapea(� ; x l ). Factors such
as the local size of �nal goods and labor markets, infrastructural endowments, the extent of
local productive variety, as well as the presence of especially conducive local institutions may
all play a role in the localization choices of �rms. Indeed, all these di�erent factors were taken
into account in the original analysis of Bottazzi and Gragnolati (2015), so that the present
study will use exactly the same controls in order to guarantee comparability. Namely, this
paper considers population, spatial extension, the presence of transportation infrastructures,
aggregate consumption and average labor productivity of the location, an index of production
variety plus two dummies for the presence of industrial districts and metropolitan areas (see
Bottazzi and Gragnolati (2015) for further details). Nonetheless, it is worth recalling that
population plays by far the most important role, serving as a proxy for the local size of both
�nal goods and labor markets. This fact is discussed at length by Bottazzi and Gragnolati (2015,
esp. pp. 9�11, tab. 2), where the marginal e�ect of population in shaping the attractiveness of
commuting zones is shown to be orders of magnitude stronger than any other intrinsic feature.
To facilitate visual inspection of this key variable, Figure 4a illustrates the spread of population
among Italian commuting zones in 2001.

12



5 Results

Considering that the focus here is on the detection of non-linearity, one looks at the estimates
of c. To provide a visual summary of the data on which estimation is based, Figure 4 illustrates
the spatial distributions for two di�erent sectors together with the spatial distribution of a
key control variable such as population. The results of the estimation procedure as applied
on a comprehensive set of manufacturing and service sectors are reported in Table 1. As a
premise, it should be noted that the estimates can be derived for high values of bothN and L,
thus allowing one to apply the present methodology at virtually any spatial scale or sectoral
disaggregation.

The basic result we obtained is a negative one. The estimate ofc turns out to be statistically
di�erent from zero only in a very small minority of the 43 sectors under analysis. More precisely,
only in four sectors is the null hypothesisH0 : c = 0 rejected at a 90% con�dence level, and only
in two sectors it is rejected at a 95% con�dence level. These numbers are consistent with the
overall validity of the null hypothesis, as they correspond to the 10% and 5% of the independent
estimates, respectively. Hence, at the scale of commuting zones, the geography of production
across the various sectors of the Italian economy in year 2001 isnot generally characterized by
quadratic localization externalities. In fact, a linear speci�cation of the Polya model is already
accurate enough to capture most of the e�ect of externalities on �rm localization. Therefore,
adding an extra �rm to a location l that hosts nl = 10 or to a location m that hosts nm = 100
�rms has approximately the sameincremental e�ect on the probability for each location to
further attract other �rms at the next localization round. Nonetheless, all other things being
equal, positive localization externalities makem more attractive than l in absolute terms,
precisely becausem hosts more �rms to begin with.

Moreover, in the rare instances in which it is signi�cantly di�erent from zero, ĉ is posi-
tive. This result rules out the presence of congestion e�ects at the scale of commuting zones,
especially if one takes into account that the condition@pl=@nl < 0 would need asu�ciently
negative value ofc in order to be met (see the related discussion above in Section 2). In fact,
albeit rarely, �rm localization might be a�ected by more-than-linear positive feedbacks, thus
making the overall e�ect of localization externalities at the scale of commuting zones positive.
That is why having an extra �rm generally increases the attractiveness of a commuting zone.

Relatedly, the multistage procedure that would serve to estimate the other unknown pa-
rameters (� ; b) is almost never triggered. Sincec is normally not statistically di�erent from
zero, the multistage estimates of the other unknown parameters turn out to be never statisti-
cally di�erent from the initialization values obtained by estimating the linear Polya model. In
this sense, the original marginal e�ects put froward by Bottazzi and Gragnolati (2015) are not
falsi�ed. It also follows that their conclusion about the relative strength of localization and
urbanization economies result to be robust to a changing functional speci�cation of localization
externalities. Similarly, other results in the literature that were based on a linear speci�cation
of externalities may also possibly represent a su�ciently accurate estimate of the determinants
of �rm localization (see Black and Henderson, 1999, Desmet and Fafchamps, 2006, Devereux
et al., 2004, Dumais et al., 2002, Duranton and Overman, 2005, Ellison and Glaeser, 1999,
Henderson, 2003, Maurel and Sédillot, 1999, Rosenthal and Strange, 2001).

6 Conclusion

This paper has presented an empirical analysis on the functional shape of localization external-
ities. So far, most of the econometric studies regarding the determinants of the localization of
economic activities have adopted a linear speci�cation of externalities. Such an approach may
produce an inaccurate measurement of the actual strength of localization externalities, par-
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ticularly if congestion e�ects are present. Hence, before jumping to strong conclusions about
the weight of externalities relative to other determinants of �rm localization, one may want
to investigate the e�ect of an alternative function speci�cation of externalities. In particular,
the present work has adopted a quadratic speci�cation. The main result is of a negative kind.
The quadratic externality coe�cient is almost never statistically di�erent from zero. Therefore,
localization externalities are approximated accurately enough by a linear speci�cation and, as
already discussed, by a speci�cation that suggests the presence of positive technological exter-
nalities that increase with the number of co-located �rms. If one accepts the assumption that
pecuniary agglomerating factors act more or less commonly across the entire economy while
technological ones are somehow limited in scope inside a speci�c sector, the analysis con�rms a
strong presence of the latter in basically all sectors under scrutiny, reinforcing the conclusions
put forward by Bottazzi and Gragnolati (2015).

Notably, the entire analysis is structured so as to allow for a direct comparison with Bottazzi
and Gragnolati (2015). On the one hand, this approach allows one to test their results further,
which however cannot be generally falsi�ed. On the other hand, the focus here on comparison
has led to the adoption of the same data. This meant estimating the quadratic Polya model at
the scale of commuting zones. Nonetheless, non-linearities in �rm localization could possibly
be occurring at other spatial scales. In particular, even in the very few sectors in which the
quadratic externality coe�cient is not statistically equal to zero, its size is extremely small.
This may signal that commuting zones are too coarse at a spatial scale to make non-linearities
detectable at a su�cient level of statistical precision. For this reason, it could be interesting
to apply the analytical framework presented here on �ner spatial scales, which may allows to
capture better, for instance, the e�ect of spatial congestion.
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Table 1: Number of plants, estimate ofc, and correspondingp-value.

Sectors N ĉ p-value

15-Food products 73680 6.77E-006 0.460
17-Textiles 31984 -4.63E-006 0.300
18-Apparel 46377 -7.94E-006 0.360
19-Leather products 24195 1.91E-004 0.230
20-Wood processing 50250 -1.73E-005 0.360
21-Pulp and paper 5175 6.82E-004 0.190
22-Publishing and printing 29166 1.91E-005 0.500
23-Coke,petroleum and nuclear fuel 913 1.45E-003 0.110
24-Organic and inorganic chemicals 7721 -3.99E-004 0.210
25-Rubber and plastic products 15115 7.87E-005 0.025
26-Non metallic mineral products 31177 1.10E-004 0.160
27-Basic metals 3984 5.22E-004 0.410
28-Fabricated metal products 102295 -7.67E-006 0.420
29-Industrial machinery 46481 -5.68E-005 0.570
30-O�ce machinery 1715 -7.84E-004 0.540
31-Electrical machinery 20282 -7.12E-005 0.590
32-Radio TV and TLC devices 9677 9.27E-005 0.330
33-Precision instruments 26244 -6.38E-005 0.320
34-Motor vehicles and trailers 2229 5.41E-004 0.690
35-Other transport equipment 4951 -7.25E-005 0.730
361-Furniture 35784 5.47E-005 0.680
362-Jewelry 10906 2.02E-005 0.790
363-Musical instruments 695 -4.96E-003 0.081
36R-Residual of sector 36 6728 5.97E-008 0.710
40-Electricity and gas 4159 -6.97E-004 0.730
41-Water 1408 -5.66E-003 0.220
45-Construction 529757 1.50E-002 0.015
50-Sale and services of motor vehicles 164079 2.94E-006 0.810
51-Wholesale and commission trade 404278 3.75E-007 0.840
52-Retail trade 772730 1.80E-005 0.011
55-Hotels and restaurants 261304 -2.61E-005 0.320
60-Land transport 135135 -1.56E-005 0.690
61-Water transport 1319 -3.88E-004 0.840
62-Air transport 457 6.22E-004 0.910
63-Auxiliary transport activities 33765 -1.14E-004 0.088
64-Post and telecommunications 18056 -1.98E-004 0.540
65-Financial intermediation 30587 -1.04E-004 0.350
66-Private insurance and pensions 1771 -4.46E-004 0.860
67-Auxiliary �nancial activities 84677 4.73E-006 0.920
70-Real estate activities 149990 -1.57E-005 0.790
71-Renting of machinery and equipment 13291 4.41E-004 0.110
72-Computer and related activities 84100 -3.39E-005 0.210
74-Business services 216883 -2.32E-005 0.120

Note: For each sector,N is the number of plants and ĉ is the estimate of c,
which is obtained with the corresponding p-value. The number of regions is
�xed to L = 686 commuting zones.
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