Modeling the Dynamics of Online News Reading Interests

Abstract : Online news readers exhibit a very dynamic behavior. News publishers have been investigating ways to predict such changes in order to adjust their recommendation strategies and beeer engage the readers. Existing research focuses on analyzing the evolution of reading interests associated with news categories. Compared to these, we study also how relations among news interests change in time. Observations over a 10-month period on a German news publisher indicate that overall, the relations amid news categories change, but stable periods spanning months are also found. e reasons of these changes and how news publishers could integrate this knowledge in their solutions are subject to further investigation.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal-paris1.archives-ouvertes.fr/hal-01516160
Contributeur : Elena Epure <>
Soumis le : vendredi 28 avril 2017 - 17:27:52
Dernière modification le : vendredi 26 janvier 2018 - 01:14:23
Document(s) archivé(s) le : samedi 29 juillet 2017 - 13:54:29

Fichier

addressing-personalization-new...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01516160, version 1

Collections

Citation

Elena Epure, Benjamin Kille, Jon Ingvaldsen, Rebecca Deneckere, Camille Salinesi, et al.. Modeling the Dynamics of Online News Reading Interests. 2017. 〈hal-01516160v1〉

Partager

Métriques

Consultations de la notice

107

Téléchargements de fichiers

191