Devising News Recommendation Strategies with Process Mining Support

Abstract : News media is in a digital transformation, disrupting their existing business models. Many news media houses are looking into recommender systems as a part of their digital strategies. However, the social role of journalism, existing publishing platforms and news as a continuous data stream infer particular challenges for applying standard recommender technologies. This paper explores how news recommendation can go beyond popularity and recency and take advantage of content quality metrics and interaction patterns. This knowledge is derived through adapting process mining for usage with web logs. The proposal is evaluated on real event logs from a German news publisher, revealing encouraging results.
Type de document :
Communication dans un congrès
Atelier interdisciplinaire sur les systèmes de recommandation / Interdisciplinary Workshop on Recommender Systems, May 2017, Paris, France. 〈http://www.aisr-2017.fr〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal-paris1.archives-ouvertes.fr/hal-01519729
Contributeur : Elena Epure <>
Soumis le : mardi 9 mai 2017 - 11:07:22
Dernière modification le : lundi 20 novembre 2017 - 17:22:10
Document(s) archivé(s) le : jeudi 10 août 2017 - 12:49:30

Fichier

AISR2017_paper_17.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01519729, version 1

Collections

Citation

Elena Viorica Epure, Rebecca Deneckere, Camille Salinesi, Benjamin Kille, Jon Ingvaldsen. Devising News Recommendation Strategies with Process Mining Support. Atelier interdisciplinaire sur les systèmes de recommandation / Interdisciplinary Workshop on Recommender Systems, May 2017, Paris, France. 〈http://www.aisr-2017.fr〉. 〈hal-01519729〉

Partager

Métriques

Consultations de la notice

173

Téléchargements de fichiers

163