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DISCRETE TIME PONTRYAGIN PRINCIPLES IN BANACH

SPACES

MOHAMMED BACHIR AND JOËL BLOT

Abstract. The aim of this paper is to establish Pontryagin’s principles in a
dicrete-time infinite-horizon setting when the state variables and the control
variables belong to infinite dimensional Banach spaces. In comparison with
previous results on this question, we delete conditions of finiteness of codi-
mension of subspaces. To realize this aim, the main idea is the introduction
of new recursive assumptions and useful consequences of the Baire category
theorem and of the Banach isomorphism theorem.

Key Words: Pontryagin principle, discrete time, infinite horizon, difference equa-
tion, Banach spaces.
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1. Introduction

The considered infinite-horizon Optimal Control problems are governed by the
following discrete-time controlled dynamical system.

xt+1 = ft(xt, ut), t ∈ N (1.1)

where xt ∈ Xt ⊂ X , ut ∈ Ut ⊂ U and ft : Xt ×Ut → Xt+1. Here X and U are real
Banach spaces; Xt is a nonempty open subset of X and Ut is a nonempty subset of
U . As usual, the xt are called the state variables and the ut are called the control
variables.

From an initial state σ ∈ X0, we denote by Adm(σ) the set of the processes
((xt)t∈N, (ut)t∈N) ∈ (

∏

t∈N
Xt) × (

∏

t∈N
Ut) which satisfy (1.1) for all t ∈ N. The

elements of Adm(σ) are called the admissible processes.

For all t ∈ N, we consider the function φt : Xt × Ut → R to define the crite-
ria.We denote by Dom(J) the set of the ((xt)t∈N, (ut)t∈N) ∈ (

∏

t∈N
Xt)× (

∏

t∈N
Ut)

such that the series
∑+∞

t=0 φt(xt, ut) is convergent in R. We define the nonlinear
functional J : Dom(J) → R by setting

J((xt)t∈N, (ut)t∈N) :=

+∞
∑

t=0

φt(xt, ut). (1.2)

Now we can give the list of the considered problems of Optimal Control.

(P1(σ)): Find ((x̂t)t∈N, (ût)t∈N) ∈ Dom(J)∩Adm(σ) such that J((x̂t)t∈N, (ût)t∈N) ≥
J((xt)t∈N, (ut)t∈N) for all ((xt)t∈N, (ut)t∈N) ∈ Dom(J) ∩ Adm(σ).

(P2(σ)): Find ((x̂t)t∈N, (ût)t∈N) ∈ Adm(σ) such that

lim suph→+∞

∑h
t=0(φt(x̂t, ût)− φ(xt, ut)) ≥ 0 for all ((xt)t∈N, (ut)t∈N) ∈ Adm(σ).
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(P3(σ)): Find ((x̂t)t∈N, (ût)t∈N) ∈ Amd(σ) such that

lim infh→+∞

∑h
t=0(φt(x̂t, ût)− φ(xt, ut)) ≥ 0 for all ((xt)t∈N, (ut)t∈N) ∈ Adm(σ).

These problems are classical in mathematical macroeconomic theory; cf. [10],
[6], [13], [11] and references therein, and also in sustainable development theory,
[8].

We study the necessary optimality conditions for these problems in the form
of Pontryagin principles. Among the different ways to treat such a question, we
choose the method of the reduction to the finite horizon. This method comes from
[5] in the discrete-time framework. Notice that this viewpoint was previously used
by Halkin ([7], Theorem 2.3, p. 20) in the continuous-time framework.

There exist several works on this method whenX and U are finite dimensional, cf.
[6]. In the present paper we treat the case where X and U are infinite dimensional
Banach spaces. With respect to two previous papers on this question, [2] and [3],
the main novelty is to avoid the use of assumptions of finiteness of the codimension
of certain vector subspaces. To realize this we introduce new recursive assumptions
on the partial differentials of the ft of (1.1). We speak of recursive assumptions
since they contain two successive dates t− 1 and t.

To make more easy the reading of the paper we describe the schedule of the
proof of the main theorem (Theorem 2.1 below) .
First step: the method of the reduction to finite horizon associates to the considered
problems in infinite horizon the same sequence of finite-horizon problems which is
indexed by h ∈ N, h ≥ 2.
Second step: the providing of conditions to ensure that we can use Multiplier Rules
(in Banach spaces) on the finite-horizon problems. Hence we obtain, for each h ∈ N,
h ≥ 2, a nonzero list (λh

0 , p
h
1 , ..., p

h
h+1) ∈ R×(X∗)h+1 where λh

0 is a multiplier associ-

ated to the criterion and (ph1 , ..., p
h
h+1) are multipliers associated to the (truncated)

dynamical system which is transformed into a list of constraints.
Third step: the building of an increasing function ϕ : N → N such that the subse-

quences (λ
ϕ(h)
0 )h and (p

ϕ(h)
t+1 )h respectively converge to λ0 and pt+1 for each t ∈ N∗,

with (λ0, (pt+1)t) nonzero. The Banach-Alaoglu theorem permits us to obtain weak-
star convergent subsequences of (λh

0 )h and (pht+1)h for each t ∈ N, and a diagonal
process of Cantor permits us to obtain the same function ϕ for all t ∈ N. The main
difficulty is to avoid that (λ0, (pt+1)t) is equal to zero. Such a difficulty is due to the
infinite dimension where the weak-star closure of a sphere centered at zero contains
zero. To overcome this difficulty, using the Baire category theorem, we establish
that a weak-star convergence implies a norm convergence on a well chosen Banach
subspace of the dual space of the state space.

Now we describe the contents of the paper. In Section 2 we present our assump-
tions and we give the statement of the main theorem on the Pontryagin principle.
In Section 3 we recall a characterization of the closedness of the image of a linear
continuous operator, a consequence of the Baire category theorem on the weak-star
convergence, and we provide a diagonal process of Cantor for the weak-star conver-
gence. In Section 4 we describe the reduction to the finite horizon and we establish
consequence of our recursive assumptions on the surjectivity and on the closedness
of the range of the differentials of the constraints in the finite-horizon problems. In
Section 5 we give the complete proof of our main theorem.
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2. The main result

First we present a list of hypotheses.

(H1): X and U are separable Banach spaces.

(H2): For all t ∈ N, Xt is a nonempty open subset of X and Ut is a nonempty
convex subset of U .

When ((x̂t)t∈N, (ût)t∈N) is a given admissible process of one of the problems ((Pi(σ))),
i ∈ {1, 2, 3}, we consider the following conditions.

(H3): For all t ∈ N, φt is Fréchet differentiable at (x̂t, ût) and ft is continuously
Fréchet differentiable at (x̂t, ût).

(H4): For all t ∈ N, t ≥ 2,
D1ft(x̂t, ût) ◦D2ft−1(x̂t−1, ût−1)(U) +D2ft(x̂t, ût)(TUt

(ût)) = X .

(H5): D1f1(x̂1, û1) ◦D2f0(x̂0, û0)(TU0(û0)) +D2f1(x̂1, û1)(TU1(û1)) = X .

(H6): ri(TU0(û0)) 6= ∅ and ri(TU1(û1)) 6= ∅.

In (H3), since Ut is not necessarily a neighborhood of ût, the meaning of this
condition is that there exists an open neighborhood Vt of (x̂t, ût) in X × U and
a Fréchet differentiable function (respectively continuously Fréchet differentiable

mapping) φ̃t : Vt → R (respectively f̃t : Vt → X) such that φ̃t and φt (respectively

f̃t and ft) coincide on Vt ∩ (Xt × Ut). Moreover D1 and D2 denotes the partial
Fréchet differentials with respect to the first (vector) variable and with respect to
the second (vector) variable respectively. About (H4), (H5) and (H6), when A is a
convex subset of U , û ∈ A, the set TA(û) is the closure of R+(A − û); it is called
the tangent cone of A at û as it is usually defined in Convex Analysis, [1] p. 166.
About (H6), if aff(TUt

(ût)) denotes the affine hull of TUt
(ût), ri(TUt

(ût)) denotes
the (relative) interior of TUt

(ût) in aff(TUt
(ût)). Such definition of the relative

interior of a convex is given in [12], p. 14-15, where it is denoted by rint.

Now we state the main result of the paper.

Theorem 2.1. Let ((x̂t)t∈N, (ût)t∈N) be an optimal process for one of the problems
(Pi(σ)), i ∈ {1, 2, 3}. Under (H1-H6), there exist λ0 ∈ R and (pt+1)t∈N ∈ (X∗)N

which satisfy the following conditions.

(1) (λ0, p1, p2) 6= (0, 0, 0).
(2) λ0 ≥ 0.
(3) pt = pt+1 ◦D1ft(x̂t, ût) + λ0D1φt(x̂t, ût), for all t ∈ N, t ≥ 1.
(4) 〈λ0D2φt(x̂t, ût) + pt+1 ◦D2ft(x̂t, ût), ut − ût〉 ≤ 0, for all ut ∈ Ut, for all

t ∈ N.

In comparison with Theorem 2.2 in [3], in this theorem we have deleted the
condition of finiteness of codimension which are present in assumptions (A5) and
(A6) in [3]. It is why this theorem is an improvment of the result of [3].

3. Functional analytic results

In this section, first we recall an characterization of the closedness of the image
of a linear continuous operator. Secondly we state a result which is a consequence
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of the Baire category theorem. After we give a version of the diagonal process of
Cantor for the weak-star convergence.

Proposition 3.1. Let E and F be Banach spaces, and L ∈ L(E,F ) (the space of
the linear continuous mappings). The two following assertions are equivalent.

(i) ImL is closed in F .
(ii) There exists c ∈ (0,+∞) s.t. for all y ∈ ImL, there exists xy ∈ E verifying

Lxy = y and ‖y‖ ≥ c‖xy‖.

This result is proven in [2] (Lemma 3.4) and in [4] (Lemma 2.1).

Proposition 3.2. Let Y be a real Banach space; Y ∗ is its topological dual space.
Let (πh)h∈N ∈ (Y ∗)N and (ρh)h∈N ∈ (R+)

N. Let K be a nonempty closed convex
subset of Y such that ri(K) 6= ∅. Let a ∈ K and we set S := aff(K)− a which is a
Banach subspace. We assume that the following conditions are fulfilled.

(1) ρh → 0 when h → +∞.

(2) πh
w∗

→ 0 (weak-star convergence) when h → +∞.
(3) For all y ∈ K, there exists cy ∈ R such that πh(y) ≤ cyρh for all h ∈ N.

Then we have ‖πh|S‖S∗ → 0 when h → +∞.

This result is established in [3] (Proposition 3.5) where several consequences
and generalizations are provided. In the following result, when t ∈ N, we set
[t,+∞)N := [t,+∞) ∩N and N∗ := [1,+∞)N.

Proposition 3.3. Let Y be a real Banach space; Y ∗ is its topological dual space.
For every (t, h) ∈ N × N∗ such that t ≤ h we consider an element πh

t+1 ∈ Y ∗. We

assume that, for every t ∈ N, the sequence (πh
t+1)h∈[t,+∞)N is bounded in Y ∗. Then

there exists an increasing function β : N∗ → N∗ such that, for all t ∈ N, there exists

πt+1 ∈ Y ∗ verifying π
β(h)
t+1

w∗

→ πt+1 when h → +∞.

Proof. Using the Banach-Alaoglu theorem, since (πh
1 )h∈[0,+∞)N is bounded in Y ∗,

there exists an increasing function α1 : [0,+∞)N → [0,+∞)N and π1 ∈ Y ∗ such that

π
α1(h)
1

w∗

→ π1 when h → +∞. Using the same argument, since (π
α1(h)
2 )h∈[1,+∞)N

is bounded, there exists an increasing function α2 : [1,+∞)N → [1,+∞)N and

π2 ∈ Y ∗ such that π
α1◦α2(h)
2

w∗

→ π2 when h → +∞. Iterating the reasoning, for
every t ∈ N∗, there exist an increasing function αt : [t,+∞)N → [t,+∞)N and

πt+1 ∈ Y ∗ such that π
α1◦...◦αt(h)
t+1

w∗

→ πt+1 when h → +∞. We define the function
β : [0,+∞)N → [0,+∞)N by setting β(h) := α1 ◦ ... ◦ αh(h). we arbitrarily fix
t ∈ N∗ and we define the function δt : [t,+∞)N → [t,+∞)N by setting δt(t) := t and
δt(h) := αt+1◦ ...◦αh(h) when h > t. When h = t, we have δt(t+1) = αt+1(t+1) ≥
t+ 1 > t = δt(t). When h ∈ [t+ 1,+∞)N, we have αt+1(h+ 1) ≥ h+ 1 > h which
implies

δt(h+ 1) = (αt+1 ◦ ... ◦ αh)(αt+1(h+ 1)) > (αt+1 ◦ ... ◦ αh)(h) = δt(h)

since (αt+1 ◦ ...◦αh) is increasing. Hence we have proven that δt is increasing. Since

β|[t,+∞)N
= (α1 ◦ ... ◦ αt) ◦ δt, we can say that (π

β(h)
t+1 )h∈[t,+∞)N is a subsequence of

(π
α1◦...◦αt(h)
t+1 )h∈[t,+∞)N , we obtain π

β(h)
t+1

w∗

→ πt+1 when h → +∞. �
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4. reduction to the finite horizon

When ((x̂t)t∈N, (ût)t∈N) is an optimal process for one of the problems (Pi(σ)),
i ∈ {1, 2, 3}. The method of the rediction to finite horizon consists on considering
of the sequence of the following finite-horizon problems.

(Fh(σ))















Maximize Jh(x1, ..., xh, u0, ..., uh) :=
∑h

t=0 φt(xt, ut)

when (xt)1≤t≤h ∈
∏h

t=1 Xt, (ut)0≤t≤h ∈
∏h

t=0 Ut

∀t ∈ {0, ..., h}, xt+1 = ft(xt, ut)
x0 = σ, xh+1 = x̂t+1

The proof of the following lemma is given in [5].

Lemma 4.1. When ((x̂t)t∈N, (ût)t∈N) is an optimal process for one of the problems
(Pi(σ)), i ∈ {1, 2, 3}, then, for all h ∈ N∗, (x̂1, ..., x̂h, û0, ..., ûh) is an optimal
solution of (Fh(σ)).

Notice that this result does not need any special assumption. Now we introduce

notation to work on these problems. We write xh := (x1, ..., xh) ∈
∏h

t=1 Xt, u
h :=

(u0, ..., uh) ∈
∏h

t=0 Ut. For all h ∈ N∗ and for all t ∈ N, we introduce the mapping

ght : (
∏h

t=1 Xt)× (
∏h

t=0 Ut) → Xt+1 by setting

ght (x
h,uh) :=







−x1 + f0(σ, u0) if t = 0
−xt+1 + ft(xt, ut) if t ∈ {1, ..., h− 1}
−x̂h+1 + fh(xh, uh).

(4.1)

We introduce the mapping gh : (
∏h

t=1 Xt)× (
∏h

t=0 Ut) → Xh+1 defined by

gh(xh,uh) := (gh0 (x
h,uh), ..., ghh(x

h,uh)). (4.2)

Under (H3), gh is of class C1. We introduce the following conditions on the differ-
entials of the ft.

∀t ∈ N, ImDft(x̂t, ût) is closed in X. (4.3)

∀t ∈ N∗, Im(D1ft(x̂t, ût) ◦D2ft−1(x̂t−1, ût−1)) + ImD2ft(x̂t, ût) = ImDft(x̂t, ût).
(4.4)

∀t ∈ N, t ≥ 2, ImDft(x̂t, ût) = X. (4.5)

Im(D1f1(x̂1, û1) ◦D2f0(σ, û0)) + ImD2f1(x̂1, û1) = X. (4.6)

Lemma 4.2. We assume that (H3) is fulfilled.

(i) Under (4.3) and (4.4), ImDgh(xh,uh) is closed.
(ii) Under (4.5) and (4.6), Dgh(xh,uh) is surjective.

Proof. (i)To abridge the writing we setDf̂t := Dft(x̂t, ût) andDif̂t := Dift(x̂t, ût)
when i ∈ {1, 2}. The condition (H3) implies that gh is Fréchet differentiable at
(xh,uh).

We arbitrarily fix zh = (z0, ..., zh) ∈ ImDgh(xh,uh). Therefore there exists yh,0 =
(y01 , ..., y

0
h) ∈ Xh and vh,0 = (v00 , ..., v

0
h) ∈ Uh+1 such that

zh = DgT (xh,uh)(yh,0,vh,0) which is equivalent to the set of the three following
equations

− y01 +D2f0(σ, û0)v
0
0 = z0 (4.7)

∀t ∈ {1, ..., h− 1}, −y0t+1 +D1f̂ty
0
t +D2f̂tv

0
t = zt (4.8)

D1f̂hy
0
h +D2f̂hv

0
h = zh. (4.9)
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We introduce the linear continuous operator L0 ∈ L(X × U,X) by setting

L0(y1, v0) := −y1 +D2f̂0v0. (4.10)

Notice that L0 is surjective since L0(X ×{0}) = X ; therefore ImL0 is closed in X .
From (4.7) we have z0 ∈ ImL0. Using Proposition 3.1 on L0 we know that

{

∃a0 ∈ (0,+∞), ∀z0 ∈ X, ∃y∗1 ∈ X, ∃v∗0 ∈ U s.t. L0(y
∗
1 , v

∗
0) = z0

and max{‖y∗1‖, ‖v
∗
0‖} ≤ a0 · ‖z0‖

i.e. we have proven

∃a0 ∈ (0,+∞), ∃y∗1 ∈ X, ∃v∗0 ∈ U s.t.

−y∗1 +D2f̂0v
∗
0 = z0 and max{‖y∗1‖, ‖v

∗
0‖} ≤ a0 · ‖z0‖

}

(4.11)

It is important to notice that a0 does not depend on z0.

We introduce the linear continuous operator L1 ∈ L(X × U,X) by setting

L1(y2, v1) := −y2 +D2f̂1v1.

Since L1(X × {0}) = X , L1 is surjective and hence z1 − D1f̂1y
∗
1 ∈ ImL1. Using

Proposition 3.1 on L1, we obtain






∃b1 ∈ (0,+∞), ∃y∗2 ∈ X, ∃v∗1 ∈ U s.t.

L1(y
∗
2 , v

∗
1) = z1 −D1f̂1y

∗
1 and

max{‖y∗2‖, ‖v
∗
1‖} ≤ b1 · ‖z1 −D1f̂1y

∗
1‖.

Using (4.11) we deduce from the last inequality

max{‖y∗2‖, ‖v
∗
1‖} ≤ b1 · (‖z1‖+ ‖D1f̂1‖ · ‖y∗1‖) ≤ b1 · (‖z1‖+ ‖D1f̂1‖ · a0 · ‖z0‖)

≤ b1 · (1 + a0 · ‖D1f̂1‖) ·max{‖z0‖, ‖z1‖}.

We set a1 := max{a0, b1 · (1+ a0 · ‖D1f̂1‖)}, and then we have proven the following
assertion.

∃a1 ∈ (0,+∞), ∃(y∗1 , y
∗
2 , v

∗
0 , v

∗
1) ∈ X2 × U2 s.t.

−y∗1 +D2f̂0v
∗
0 = z0, −y∗2 +D1f̂1y

∗
1 +D2f̂1v

∗
1 = z1,

max{|y∗1‖, ‖y
∗
2‖, ‖v

∗
0‖, ‖v

∗
1‖} ≤ a1 ·max{‖z0‖, ‖z1‖}.







(4.12)

It is important to notice that a1 does not depend on z0, z1. We iterate the reasoning
until h− 2 and we obtain

∃ah−2 ∈ (0,+∞), ∃(y∗t )1≤t≤h−1 ∈ Xh−1, ∃(v∗t )0≤t≤h−2 ∈ Uh−1 s.t.

−y∗1 +D2f̂0v
∗
0 = z0, ∀t ∈ {1, ..., h− 2},−t∗t+1 +D1f̂ty

∗
t +D2f̂tv

∗
t = zt

max{max1≤t≤h−1 ‖y∗t ‖,max0≤t≤h−2 ‖v∗t ‖} ≤ ah−2 max0≤t≤h−2 ‖zt‖.







(4.13)

From (4.9) we know that zh ∈ ImDf̂h. Moreover we have

D1f̂hzh−1 ⊂ ImDf̂h and D1f̂h ◦D1f̂h−1y
∗
h−1 ∈ ImD1f̂h ⊂ ImDf̂h

and therefore we have

zh +D1f̂h−1zh−1 −D1f̂h ◦D1f̂h−1y
∗
h−1 ∈ ImDf̂h. (4.14)

Introduce the linear continuous operator Λ ∈ L(U × U,X) by setting

Λ(v, w) := D1f̂h ◦D2f̂h−1v +D2f̂hw. (4.15)
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Under assumptions (4.4) and (4.5) we have ImΛ = ImDf̂h and ImΛ is closed in
X . After (4.14), using Proposition 3.1 on Λ we obtain

∃c ∈ (0,+∞), ∃(v∗h−1, v
∗
h) ∈ U × U, s.t.

Λ(v∗h−1, v
∗
h) = zh +D1f̂hzh−1 −D1f̂h ◦D1f̂h−1y

∗
h−1

i.e.

D1f̂h ◦D2f̂h−1v
∗
h−1 +D2f̂hv

∗
h =

zh +D1f̂hzh−1 −D1f̂h ◦D1f̂h−1y
∗
h−1 and

max{‖v∗h−1‖, ‖v
∗
h‖} ≤ c · ‖zh +D1f̂hzh−1 −D1f̂h ◦D1f̂h−1y

∗
h−1‖.



































(4.16)

From this last inequality, using (4.13), we obtain

max{‖v∗h−1‖, ‖v
∗
h‖}

≤ c · (‖zh‖+ ‖D1f̂h‖ · ‖zh−1‖+ ‖D1f̂h ◦D1f̂h−1‖ · ‖y
∗
h−1‖)

≤ c · (‖zh‖+ ‖D1f̂h‖ · ‖zh−1‖+ ‖D1f̂h ◦D1f̂Th1‖ · ah−2 ·max1≤t≤h−2 ‖zt‖)

≤ c · (1 + ‖D1f̂h‖+ ah−2 · ‖D1f̂h ◦D1f̂h−1‖) ·max1≤t≤h ‖zt‖.

We set c1 := c · (1 + ‖D1f̂h‖ + ah−2 · ‖D1f̂h ◦D1f̂h−1‖) ∈ (0,+∞). Then we have
proven the following assertion.

∃c1 ∈ (0,+∞),max{‖v∗h−1‖, ‖v
∗
h‖} ≤ c1 · max

1≤t≤h
‖zt‖. (4.17)

We set
y∗h := D2f̂h−1v

∗
h−1 +D1f̂h−1y

∗
h−1 − zh−1. (4.18)

This equality implies

− y∗h +D1f̂h−1y
∗
h−1 +D2f̂h−1v

∗
h−1 = zh−1 (4.19)

which is the penultimate wanted equation.

Notice that we have ‖y∗h‖ ≤ ‖D2f̂h−1‖ · ‖v∗h−1‖+ ‖D1f̂h−1‖ · ‖y∗h−1‖+ ‖zh−1‖, and
using (4.17) and (4.18) we obtain

‖y∗h‖ ≤ ‖D2f̂h−1‖ · c1 ·max1≤t≤h ‖zt‖

+‖D1f̂h−1‖ · ah−2 ·max1≤t≤h−2 ‖zt‖+ ‖zh−1‖

≤ (c1 · ‖D2f̂h−1‖+ ah−2 · ‖D1f̂h−1‖+ 1) ·max1≤t≤h ‖zt‖.

We set c2 := c1 · ‖D2f̂h−1‖+ ah−2 · ‖D1f̂h−1‖+ 1, and so we have proven

∃c2 ∈ (0,+∞), ‖y∗h‖ ≤ c2 · max
1≤t≤h

‖zt‖. (4.20)

We set ah := max{ah−3, c1, c2}, and from (4.13), (4.17) and (4.20) we have proven

∃ah ∈ (0,+∞),max{ max
1≤t≤h

‖y∗t ‖, max
0≤t≤h

‖v∗t ‖} ≤ ah · max
1≤t≤h

‖zt‖. (4.21)

Now we show that the last equation is satisfied by y∗h and v∗h. Using (4.18) and
(4.16), we obtain

D1f̂hy
∗
h +D2f̂hv

∗
h

= D1f̂T (D2f̂h−1v
∗
h−1 +D1f̂h−1y

∗
h−1 − zh−1) +D2f̂hv

∗
h

= (D1f̂h ◦ (D2f̂h−1v
∗
h−1 +D2f̂hv

∗
h) +D1f̂h ◦D1f̂h−1y

∗
h−1 −D1f̂hzh−1

= (zh +D1f̂hzh−1 −D1f̂h ◦D1f̂h−1y
∗
h−1) +D1f̂h ◦D1f̂h−1y

∗
h−1 −D1f̂hzh−1

= zh.

We have proven that

D1f̂hy
∗
h +D2f̂hv

∗
h = zh. (4.22)
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From (4.13), (4.19), (4.21) and (4.22) we have proven the following assertion






















∃ah ∈ (0,+∞), ∀(zt)0≤t≤h ∈ ImDgh(x̂
h, ûh),

∃(y∗t )1≤t≤h ∈ Xh, ∃(v∗t )0≤t≤h ∈ Uh+1, s.t.

−y∗1 +D2f̂0v
∗
0 = z0, ∀t ∈ {1, ..., h− 1}, −yt+1 +D1f̂ty

∗
t +D2f̂tv

∗
t = zt,

D1f̂hy
∗
h +D2f̂hv

∗
h = zh, and

max{max1≤t≤h ‖y∗t ‖,max0≤t≤h ‖v∗t ‖} ≤ ah ·max1≤t≤h ‖zt‖.

This last assertion is equivalent to the following one






∃ah ∈ (0,+∞), ∀zh = (zt)0≤t≤h ∈ ImDgh(x̂h, ûh),
∃yh,∗ = (y∗t )1≤t≤h ∈ Xh, ∃vh,∗ = (v∗t )0≤t≤h ∈ Uh+1, s.t.
Dgh(x̂h, ûh)(yhvh,∗) = zh and ‖(yh,∗,vh,∗)‖ ≤ ah · ‖zh‖.

Now using Proposition 3.1 on the operator Dgh(x̂h, ûh), the previous assertion
permits us to assert that ImDgh(x̂h, ûh) is closed in Xh+1, and the proof of (i) is
complete.

(ii) We arbitrarily fix zh = (z1, ..., zh) ∈ Xh. Since Df̂h is surjective, there exists

y
#
h ∈ X and v

#
h ∈ U such that Df̂h(y

#
h , v

#
h ) = zh. Since Df̂h−1 is surjective, there

exists y
#
h−1 ∈ X and v

#
h−1 ∈ U such that Df̂h−1(y

#
h−1, v

#
h−1) = zh−1 + y

#
h . We

iterate this bachward reasoning until t = 2 to obtain

∀t ∈ {2, ..., h}, ∃(y#t , v
#
t ) ∈ X × U s.t. Df̂h(y

#
h , v

#
h ) = zh

and ∀t ∈ 2, ..., h− 1,−y
#
t +Df̂t(y

#
t , v

#
t ) = zt.

}

(4.23)

Now we introduce the linear continuous operator M ∈ L(U × U,X) by setting

M(v0, , v1); = D1f̂1 ◦D2f̂0v0 + D2f̂1v1. From (4.6) we have ImM = X i.e. M is
surjective. Therefore we obtain

∃(v#0 , v
#
1 ) ∈ U × U s.t. D1f̂1 ◦D2f̂0v

#
0 +D2f̂1v

#
1 = z1 + y

#
2 +D1f̂1z0. (4.24)

We set y#1 := D2f̂0v
#
0 − z0. Hence we obtain

− y
#
1 +D2f̂0v

#
0 = z0. (4.25)

Using (4.24) and (4.25), we calculate

−y
#
2 +D1f̂1y

#
1 +D2f̂1v

#
1 = −y

#
2 +D1f̂1(D2f̂0v

#
0 − z0) +D2f̂1v

#
1

= −y
#
2 + (D1f̂1 ◦D2f̂0v

#
0 +D2f̂1v

#
1 )−D1f̂1z0

= −y
#
2 + (z1 + y

#
2 +D1f̂1z0)−D1f̂1z0 = z1.

We have proven

− y
#
2 +D1f̂1y

#
1 +D2f̂1v

#
1 = z1. (4.26)

From (4.23), (4.25) and (4.26) we have proven

∀(zt)0≤t≤h ∈ Xh+1, ∃(y#t )1≤t≤h ∈ Xh, ∃(v#t )0≤t≤h ∈ Uh+1 s.t.

−y
#
1 +D2f̂0v

#
0 = z0, ∀t ∈ {1, ..., h− 1} − y

#
t+1 +Df̂(y#t , v

#
t ) = zt

and Df̂h(y
#
h , v

#
h ) = zh.







(4.27)

This assertion is equivalent to

∀zh ∈ Xh+1, ∃yh,# ∈ Xh, ∃vh,# ∈ Uh+1 s.t. Dgh(xh,uh()yh,#,vh,#) = zh

which means that Dgh(xh,uh) is surjective. �
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Lemma 4.3. Let (x̂t)t∈N, (ût)t∈N) be an optimal solution of one of the problems
(Pi(σ)), i ∈ {1, 2, 3}. Under (H1), (H2), (H3), (4.3) and (4.4), for all h ∈ N∗,
there exists λh

0 ∈ R and (pht+1)0≤t≤h ∈ (X∗)h+1 such that the following assertions
hold.

(a) λh
0 and (pht+1)0≤t≤h are not simultaneously equal to zero.

(b) λh
0 ≥ 0.

(c) pht = pht+1 ◦D1ft(x̂t, ût) + λh
0D1φt(x̂t, ût) for all t ∈ N∗.

(d) 〈λh
0D2φt(x̂t, ût) + pht+1 ◦ D2ft(x̂t, ût), ut − ût〉 ≤ 0 for all t ∈ {0, ..., h},

for all ut ∈ Ut.

Moreover, for all h ≥ 2, if in addition we assume (H4), (H5) and (H6) fulfilled, the
following assertions hold.

(e) For all t ∈ {1, ..., h + 1}, there exists at, bt ∈ R+ such that, for all s ∈
{1, ..., h}, ‖pht ‖ ≤ atλ

h
0 + bt‖p

h
s‖.

(f) For all t ∈ {1, ..., h}, (λh
0 , p

h
t ) 6= (0, 0).

(g) For all t ∈ {1, ..., h}, for all z ∈ At := D2ft−1(x̂t−1, ût−1)(TUt−1(ût−1)),

there exists cz ∈ R such that pht (z) ≤ czλ
h
0 for all h ≥ t.

Proof. Let h ∈ N∗. Using Lemma 4.1, (4.1) and (4.2), we know that (x̂h, ûh) (where
x̂h = (xh

1 , ..., x
h
h) and ûh = (uh

0 , ..., u
h
h)), is an optimal solution of the following

maximization problem,






Maximize Jh(x
h,uh)

when (xh,uh) ∈ (
∏h

t=1 Xt)× (
∏h

t=0 Ut),
gh(xh,uh) = 0.

From (H3) we know that Jh is Fréchet differentiable at (x̂h, ûh) and gh is Fréchet
continuously differentiable at (x̂h, ûh). From (4.3), (4.4) and Lemma 4.2 we know
that ImDgh(x̂h, ûh) is closed in Xh+1. Now using the multiplier rule which is given
in [9] (Theorem 3.5 p. 106–111 and Theorem 5.6 p. 118) and explicitely written in
[3] (Theorem 4.4), and proceeding as in the proof of Lemma 4.5 of [3], we obtain
the assertions (a), (b), (c), (d).

The proof of assertions (e), (f), (g) is given by Lemma 4.7 of [3]. The proof of
this Lemma 4.7 uses the condition 0 ∈ Int[Df(x̂t, ût)(X×TUt

(ût))∩BX×U ] where
BX×U is the closed unit ball of X × U . It suffices to notice that our assumption
(H4) implies this condition. �

Remark 4.4. In Lemma 4.5 of [3] the finiteness of the codimension of ImD2f(x̂t, ût)
is useful to ensure the closedness of ImDgh(x̂h, ûh). Here we can avoid this as-
sumption of finiteness thanks the recursive assumptions.

The following proposition is used in the proof of the main result.

Proposition 4.5. Let (x̂t)t∈N, (ût)t∈N) be an optimal solution of one of the prob-
lems (Pi(σ)), i ∈ {1, 2, 3}. Under (H1-H6) we introduce

Z0 := D2f0(σ, û0)(TU0(û0)) and Z1 := D2f1(x̂1, û1)(TU1(û1)).

Then, for all h ∈ N, h ≥ 2, there exist λh
0 ∈ R and (pht+1)0≤t≤h ∈ (X∗)h+1 such

that the following assertions hold.

(1) λh
0 ≥ 0.

(2) pht = pht+1 ◦D1ft(x̂t, ût) + λh
0D1φt(x̂t, ût) for all t ∈ N∗.
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(3) 〈λh
0D2φt(x̂t, ût) + pht+1 ◦ D2ft(x̂t, ût), ut − ût〉 ≤ 0 for all t ∈ {0, ..., h},

for all ut ∈ Ut.
(4) For all t ∈ {1, ..., h + 1}, there exists at, bt ∈ R+ such that, for all s ∈

{1, ..., h}, ‖pht ‖ ≤ atλ
h
0 + bt‖phs‖.

(5) (λh
0 , p

h
1 |Z0

, ph2 |Z1
) 6= (0, 0, 0).

(6) For all z0 ∈ Z0, for all z1 ∈ Z1, there exists cz0,z1 ∈ R such that,
for all h ≥ 2, ph1 (z0) + ph2(z1) ≤ cz0,z1λ

h
0 .

(7) For all v ∈ X there exists (z0, z1) ∈ Z0 × Z1 such that
ph2 (v) = ph1(z0) + ph2 (z1)− λh

0D1φ1(x̂1, û1)(z0) for all h ≥ 2.

Proof. Proof of (1-4) Note that conditions (4.3) and (4.4) are consequences of (H4).

We use λh
0 and (pht+1)0≤t≤h which are provided by Lemma 4.3. Hence conclusions

(1), (2) and (3) are given by Lemma 4.3. The conclusion (4) is the conclusion (e)
of Lemma 4.3.
Proof of (5) From the conclusion (f) of Lemma 4.3, we know that (λh

0 , p
h
1 ) 6= (0, 0).

We want to prove that [(λh
0 , p

h
1 ) 6= (0, 0)] implies (5). To do that we proceed by

contraposition; we assume that [λh
0 = 0, ph1 |Z0

= 0, ph2 |Z1
= 0] and we want to

prove that [λh
0 = 0, ph1 = 0]. Since λh

0 = 0, using the conclusion (2) we obtain
ph1 = ph2 ◦D1f1(x̂1, û1) which implies

ph1 ◦D2f0(σ, û0)(TU0(û0)) = ph2 ◦D1f1(x̂1, û1) ◦D2f0(σ, û0)(TU0(û0)),

and since ph1 |Z0
= 0, we obtain ph2 ◦ D1f1(x̂1, û1) ◦ D2f0(σ, û0)(TU0(û0)) = 0, and

since ph2 |Z1
= 0, using (H5), we obtain ph2 = 0 (on X all over). Hence ph1 =

ph2 ◦D1f1(x̂1, û1) = 0. The proof of (5) is complete.
Proof of (6) Let z0 ∈ Z0 , z1 ∈ Z1. Using conclusion (g) of Lemma 4.3, we obtain

that there exists c0z0 ∈ R such that ph1 (z0) ≤ c0z0λ
h
0 for all h ≥ 1, and that there

exists c1z1 ∈ R such that ph2(z1) ≤ c1z1λ
h
0 for all h ≥ 2. Setting cz0,z1 := c0z0 + c1z1 we

obtain the announced conclusion.
Proof of (7) From (H5), for all v ∈ X , there exists ζ0 ∈ TU0(û0) and ζ1 ∈ TU1(û1)

such that

v = D1f1(x̂1, û1) ◦D2f0(σ, û0)(ζ0) +D2f1(x̂1, û1)(ζ1).

We set z0 := D2f0(σ, û0)(ζ0) ∈ Z0 and z1 := D2f1(x̂1, û1)(ζ1) ∈ Z1, hence we have

v = D1f1(x̂1, û1)(z0) + z1. (4.28)

From conclusion (2) we deduce

ph1 ◦D2f0(σ, û0) = ph2 ◦D1f1(x̂1, û1) ◦D2f0(σ, û0) + λh
0D1φ1(x̂1, û1) ◦D2f0(σ, û0).

Applying this last equation to ζ0 we obtain

ph1 (z0) = ph2 ◦D1f1(x̂1, û1)(z0) + λh
0D1φ1(x̂1, û1)(z0).

Adding ph2 (z1) to this equality we obtain

ph1 (z0) + ph2 (z1) = ph2 ◦D1f1(x̂1, û1)(z0) + ph2(z1) + λh
0D1φ1(x̂1, û1)(z0).

Using (4.28) we have ph1(z0) + ph2(z1) = ph2 (v) + λh
0D1φ1(x̂1, û1)(z0) which implies

the announced equality. �
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5. Proof of the main theorem

Proposition 4.5 provides sequences (λh
0 )h≥2, (pht )h≥t for all t ∈ N∗. We set

qh1 := ph1 ◦D2f0(σ, û0) ∈ U∗ and qh2 := ph2 ◦D2f1(x̂1, û1) ∈ U∗ for all h ≥ 2. From
conclusion (5) of Proposition 4.5 we obtain

(λh
0 , q

h
1 |TU0 (û0)

, qh2 |TU1 (û1)
) 6= (0, 0, 0).

We introduce Σ := aff(TU0(û0)×TU1(û1)) the closed affine hull of TU0(û0)×TU1(û1)
which is a closed vector subspace since the tangent cones contain the origine. From
the previous relation we can assert that (λh

0 , (q
h
1 , q

h
2 )|Σ) 6= (0, (0, 0)). We introduce

the number

θh := λh
0 + ‖(qh1 , q

h
2 )|Σ‖Σ∗ > 0.

Since the list of the multipliers of the problem in finite horizon is a cone, we can
replace λh

0 by 1
θhλ

h
0 and the pht by 1

θh p
h
t (without to change the writting), and so

we can assume that the following property holds.

∀h ≥ 2, λh
0 + ‖(qh1 , q

h
2 )|Σ‖Σ∗ = 1. (5.1)

Using the Banach-Alaoglu theorem, we can assert that there exist an increasing
mapping ϕ1 : [2,+∞)N → [2,+∞)N, λ0 ∈ R, (q1, q2) ∈ Σ∗ such

(λ
ϕ1(h)
0 , (q

ϕ1(h)
1 , q

ϕ1(h)
2 )|Σ)

w∗

−→ (λ0, (q1, q2)) when h → +∞.

Now we want to establish that

(λ0, (q1, q2)) 6= (0, (0, 0)). (5.2)

To do that we proceed by contradiction; we assume that λ0 = 0 and (q1, q2) = (0, 0).
From conclusion (6) of Proposition 4.5 we deduce that, for all ζ0 ∈ TU0(û0) and

for all ζ1 ∈ TU1(û1), there exixts cζ0,ζ1 ∈ R such that q
ϕ1(h)
1 (ζ0) + q

ϕ1(h)
2 (ζ1) ≤

cζ0,ζ1λ
ϕ1(h)
0 for all h ≥ 2. Hence we can use Proposition 3.2 with Y = Σ, K =

TU0(û0) × TU1(û1), S = Σ, ρh = λ
ϕ1(h)
0 , and πh = (q

ϕ1(h)
1 , q

ϕ1(h)
2 )|Σ. Conse-

quently we obtain that limh→+∞ ‖(q
ϕ1(h)
1 , q

ϕ1(h)
2 )|Σ‖Σ∗ = 0. Since we also have

limh→+∞ λ
ϕ1(h)
0 = 0, we obtain a contradiction with (5.1). Hence (5.2) is proven.

From conclusion (7) of Proposition 4.5 we have, for all x ∈ X , there exists (ζ0, ζ1) ∈
Σ such that, for all h ≥ 2,

p
ϕ1(h)
2 (x) = (q

ϕ1(h)
1 , q

ϕ1(h)
2 )|Σ(ζ0, ζ1)− λ

ϕ1(h)
0 D1φ1(x̂1, û1) ◦D2f0(σ, û0)(ζ0)

which permits to say that there exists p2 ∈ X∗ such that p
ϕ1(h)
2

w∗

→ p2 when h →
+∞.

From conclusion (2) of Proposition 4.5 at t = 1, we obtain that there exists p1 ∈ X∗

such that p
ϕ1(h)
1

w∗

→ p1 when h → +∞, and from (5.2) we obtain

(λ0, (p1, p2)) 6= (0, (0, 0)). (5.3)

Since (p
ϕ1(h)
1 )h≥2 is weak-star convergent on X , using the Banach-Steinhaus theo-

rem we can assert that the sequence (‖p
ϕ1(h)
1 ‖X∗)h≥2 is bounded. Since (λ

ϕ1(h)
0 )h≥2

is convergent in R, it is bounded, and from conclusion (4) of Proposition 4.5, we

deduce that the sequence (p
ϕ1(h)
t )h∈[t,+∞)N is bounded for each t ∈ N∗. Then

we can use Proposition 3.3 to ensure the existence of an increasing function ϕ2 :
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[2,+∞)N → [2,+∞)N and a sequence (pt)t∈N∗
∈ (X∗)N∗ such that p

ϕ1◦ϕ2(h)
t

w∗

→ pt

when h → +∞ for all t ∈ N∗, and we have also λ
ϕ1◦ϕ2(h)
0 → λ0 when h → +∞.

Hence we have built all the multipliers. The properties of these multipliers are
obtained by taking limits from the properties of the λh

0 and the pht . Their non
triviality is proven by (5.3). Hence the proof of the main result is complete.
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