A convex extension of lower semicontinuous functions defined on normal Hausdorff space
Abstract
We prove that, any problem of minimization of proper lower semicontinuous function defined on a normal Hausdorff space, is canonically equivalent to a problem of minimization of a proper weak * lower semicontinuous convex function defined on a weak * convex compact subset of some dual Banach space. We estalish the existence of an bijective operator between the two classes of functions which preserves the problems of minimization.
Origin : Files produced by the author(s)
Loading...