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Abstract. We prove that, any problem of minimization of proper lower semicontinuous
function defined on a normal Hausdorff space, is canonically equivalent to a problem
of minimization of a proper weak® lower semicontinuous convex function defined on a
weak™ convex compact subset of some dual Banach space. We estalish the existence of
an bijective operator between the two classes of functions which preserves the problems
of minimization.
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1 Introduction.

Let (X, 7) be a completely regular and Hausdorff space. By (Cy(X), ||.]|]) we denote the
Banach space of all real-valued, bounded and continuous functions, equipped with the
sup-norm. The continuous Dirac map is defined by



A (X, 1) — (AX),w") C (Bg,x))w")
r = Az)

where, (B(c,(x))+w") is the closed unit ball of the dual space (Cy(X))* equipped with
the weak™ topology and A(z) : Cp(X) — R is the linear continuous map defined by
A(x)(¢) = @(x) for all z € X and all ¢ € Cp(X). It is well know that A is a homeomor-

phism from (X, 7) onto (A(X),w*), it is also well know that the set A(X)" coincides
(up to homeomorphism) with the Stone-Cech compactification SX. The Stone-Cech
compactification X, has the property that every continuous function ¢ from X into a
compact Hausdorff space K, has a unique extension to a continuous function Sp from

BX into K. For more informations about the Stone-Cech compactification, we refer to
[7].

We are interested in this paper, on a canonical extension of bounded from below
lower semicontinuous function f from X into R to a bounded from below extended
convex weak™ lower semicontinuous function 7 (f) defined on the convex weak® compact
set co® (A(X)) (the weak* closed convex hull of A(X), which can be seen as the
convexification of the Stone-Cech compact 3X). To prove the existence of a canonical
extension of any bounded from below lower semicontinuous function f from X into R,
we need to assume that X is a normal Hausdorff space. Recall that a topological space
X is a normal space if, given any disjoint closed sets F and F', there are neighbourhoods
U of F and V of F that are also disjoint. The tools that will be used for this purpose,
are based on a non convex analogue to Fenchel duality introduced in [1].

If A is a subset of Cy(X), we denote by o4 the support function, defined on the dual
space by

VQ € (Cy(X))"; 0a(Q) == Sug(Q,@-
o€

Definition 1. A nonempty subset A of Cy(X) is said to be a A-set, if and only if, for
all x € X there exist a real number A\, € R, such that

A = meX{SD € Cb(X)/<A(x)aSD> < Am}
= Neex{y € Gp(X)/p(x) < A}

A A-set of Cp(X) is necessarily a closed convex subset of Cy(X). We denote by
SCI(X) the set of all real-valued functions f : X — R, bounded from below and
lower semicontinuous and by I'(6"" (A(X)) we denote the set of all convex weak* lower
semicontinuous functions that are the restrictions to &% (A(X)) of the functions o4,

where A is a A-set of Cp(X):
(@ (A(X))) == {(04) /v (a(x)) /A is a A-set of Cy(X)}.

It is easy to see that SCI(X) is a convex cone. The aim of this paper is to prove
the following result.



Theorem 1. Let X be a normal Hausdorff space. Then, the set T'(Go” (A(X))) is
a conver cone and there exists an isomorphism of conver cone T : SCI(X) —
['(@"" (A(X))) i.e. T is bijective and for all f,g € SCI(X) and all o, f € RT, we
have

T(af + Bg) = T (f) + BT (9)-

This isomorphism satisfies also the following properties.

(1) For all f € SCI(X), T(f)o A = f, this means that T(f) is a convexr weak*
lower semicontinuous extension of f to o™ (A(X)), up to the identification between X
and A(X).

(2) The convex cone isomorphime T is isotone i.e. for all f,g € SCI(X), we have
that

f<9g=T()<T()

(3) For all bounded continuous function ¢ € Cy(X) and all Q € ¥ (A(X)), we
have

T(@)(Q) = (Q,¢p) == 4(Q).

This means that for all ¢ € Cp(X), the function T () is affine and weak™ continuous
on @ (A(X)).
(4) For all f € SCI(X), we have

inff= min 7(f)= min T(f).
X A" " (A(X))

In the last part of the above theorem, the weak™ convex lower semicontinuous func-

tion 7'(f) always attains its minimum on A(X)  since it is a compact set, this is not
the case in general for f. From the parts (1) and (4) of the above theorem, we get that a
point z € X is a minimum for a lower semicontinuous function f iff A(z) is a minimum
for the convex weak™* lower semicontinuous function 7(f). More generally, if Y C Cp(X)
is a class of perturbations, then from the fact that 7 is a cone isomorphism we have
that T(f +¢) = T(f)+ T (v). Using part (3), we get that 7(f +¢) = T(f)+ ¢. Thus,
from parts (1) and (4), we have that for each ¢ € Y, f + ¢ has a minimum at some
point x € X iff T(f) + ¢ has a minimum at A(x). This shows that a non linear varia-
tional principle for lower semicontinuous functions f defined on normal Hausdorff space
is equivalent to a linear variational principle for convex weak* lower semicontinuous
functions 7(f) defined on a convex weak* compact subset of some dual Banach space.
The just mentioned remark can be seen as a linearization of the Deville-Godefroy-Zizler
variational principle [2], [3], [4].

This main result will be proved at the end of this note when preliminary results are
established in the next sections. These preliminary results are of interest in themselves.

2 Duality and linearization results.

Let X be a topological space and C(X) the space of all real-valued continuous functions
on X. Let Y be a non empty subset of C(X). Let f: X — R U {+o0} be a function



such that dom(f) := {z € X/f(x) < +o0} # 0. By Ay (f) we denote the set

Ay (f) :={reY/p < f}.

We introduced in [1] a non convex analogue to Fenchel duality, where relations between
well-posedness and differentiability was established. We recall that the conjugate of f
depending on the class of functions Y is defined as follows: for all p € Y,

f*(p) := sup{p(x) — f(z)}.
rzeX
Note that dom(f*) # (0 if and only if, there exists a real number ¢ € R such that
Ay (f 4 ¢) # 0, this condition is satisfed in particular if f is bounded from below. The
second conjugate of f is defined on X as follows: for all x € X

(@) = supfop(z) — (o)}

peY

Note that we always have that f** < f.

2.1 Conjugacy of lower semicontinuous function.

If the class Y is a vector subspace of C(X), then f* is a convex function on Y as a
supremum of affine maps on Y. If moreover, Y is a vector subspace of Cp(X) (the
space of all real-valued bounded and continuous functions), then it is easy to see that
f* is a convex and 1-Lipschitz map for the norm ||.||s, for every bounded from below
functionf. But in general f** is not convex on X even if X is a vector space. Actually,
we get in Theorem 2 that under general conditions on the pair (X,Y’), we have that
f is lower semicontinuous function if and only if, f** = f. This result was initially
obtained in [Theorem 1, [1||, when X is a metric space and Y is a subspace of Cp(X)
containing a bump function (a bounded function on X with a nonempty support). In
fact, this result is true in a more general setting with essentially the same proof. Since
we need to use this result in a general topological space, we give its proof in its general
setting.

Definition 2. Let X be a topological space and 'Y be a nonempty subset of C(X). We
say that the pair (X,Y) satisfies the property (H) if and only if, for each x € X and
each open neighborhood U of x, there exists o : X — [0,1] such that o €Y, o(x) =1
and o(y) =0 for ally € X \ U.

Examples 1. We have the following examples.

(1) If X is a normal Hausdorff space, then (X,Cy(X)) satisfies (H) tanks to the
Urysohn’s lemma.

(2) If (X, d) is a metric space, then it is easy to see that (X, Lipy(X)) satisfies (H),
where Lipy(X) denotes the space of all real-valued bounded and Lipschitz map on X.

(3) If X is a Banach space having a k-times (k € NU {400}) continuously differ-
entiable and uniformly bounded bump function (see [3] for examples of Banach spaces
having this property), then of course (X,CF(X)) satisfies (H), where CF(X) denotes
the space of all k-continuously differentiable and uniformly bounded functions on X.



Theorem 2. Let X be a topological space and'Y be a cone included in C(X). Suppose
that the pair (X,Y) satisfies the hypothesis (H). Let f : X — RU{+o0} be a function
with dom(f) # 0 and such that Ay (f) # 0. Then, f is lower semi-contivous if and only
=

Proof. The "only if" part follows from the definition of f** and the fact that, the
supremum of continuous functions is a lower semicontinuous function. Let us prove the
"if" part. Since Ay (f) # 0, there exists pg € Y such that ¢g < f. Set g:= f — o >0
and let us proof that g** = ¢. Indeed, let £ € X and take any real number a such
that a < g(z). We prove that a < ¢**(z). Indeed, since g is lower semicontinuous,
there exists an open neighborhood U of z such that a < g(y) for all y € U. From the
hypothesis (H), there exists a continuous function o : X — [0,1] such that ¢ € Y,
o(x) =1and o(y) =0 for all y € X \ U. We define ¢, (y) := (g9(x) — infx g)o(y) for
all y € X. Clearly, ¢, € Y for all x € X, since Y is a cone and ¢ € Y. By separately
examining the case where y € U and y € X \ U, we can easily verify that

02(y) — 9(y) < pz(x) — a.

Taking the supremum over y € X, we obtain that ¢* (¢,) < ¢z(z) —a. Thus,we obtain
a < () — g% (vr) < ¢**(x). This proves that a < ¢g**(zx) for all a < g(x). Hence
g(x) < ¢g**(x) for all z € X. On the other hand, it follows from the definition of
the second conjugacy that ¢**(z) < g(z) for all x € X. Thus, ¢**(x) = g(z) for all
x € X. Now, replacing g by f — ¢g, we get that ¢** = f** — 9. So we obtain that
[*—po=[f—wpoie f**=Ff

U

Corollary 1. Let X be a topological space andY be a cone including in C(X) containing
the constants. Suppose that the pair (X,Y") satisfies (H). Let f : X — RU{+o0} be a
fuction with dom(f) # O and such that Ay (f) # 0. Then, f is lower semicontinuous if
and only if, f(z) = SUPye Ay (1) o(z) for all x € X. In other words, f is the supremum
of functions from Y that minors f from below.

Proof. Suppose that f is lower semicontinuous. On one hand, we have sup,,¢ Ay (f) o) <
f(z) for all z € X. On the other hand, we known from Theorem 2 that f(x) = f**(z) =
sy {0(2)— X (1)} < sup e a, () @), simee w(.)— £ () < f and () (1)) € ¥
for each ¢ € Y. Now, if f(z) = supgeca, (s) () for all z € X, then f is lower semicon-
tinuous as supremum of continuous functions. ]

Examples 2. From Corollary 1 and Example 1., we get that

(1) if X is a normal Hausdorff space, then each lower semicontinuous function f with
a nonempty domain and bounded from below by a continuous function, is the supremum
of the continuous functions that minors f from below.

(2) if X is a metric space, then each lower semicontinuous function f with a nonempty
domain and bounded from below by a Lipschitz continuous function, is the supremum of
the Lipschitz continuous functions that minors f from below.

(3) if X is a Banach space having a k-times (k € NU {4+00}) continuously differ-
entiable bump function, then each lower semicontinuous function f with a nonempty
domain and bounded from below by a k-times continuously differentiable function, is the
supremum of the k-times continuously differentiable function that minors f from below.



2.2 A convex extention of lower semicontinuous function.

Let X be a normal Hausdorff space and (Y, ||.]|) is a Banach space included in Cp(X)
such that ||.|| > ||.]lc and (X,Y) satisfies the hypothesis (H). Clearly, this conditions
implies the following properties:

) 1> Il

(2) Y separate the points of X

(3) for each = € X, there exists ¢ € Y such that p(z) = 1.

For each = € X, we denote by ¢, the Dirac evaluation defined by d,(¢) = ¢(z) for
all ¢ € Y. The continuity of the linear map 9, is guaranteed by the condition (1) above.
Clearly, 6, € By« (the unit ball of the topological dual space of V') for all x € X. We
define Ay : (X,7) — (Y*,w*) by Ay (z) = ¢, for all x € X. The injectivity of Ay is
guaranteed by the condition (2). We need the following proposition.

Proposition 1. Let (X, 7) be a normal Hausdorff space and (Y, ||.||) is a Banach space
included in Cy(X) such that ||.| > ||.]lcc and (X,Y) satisfies the hypothesis (H). Then,
the map Ay is an homeomorphism from (X, 7) onto (Ay(X),w*).

Proof. Let x,y € X such that x # y. Since Y separate the points of X, there exists
o €Y such that o(z) # o(y) and so Ay is one-to-one. Clearly, Ay is 7-w*-continuous,
since Y C Cy(X). Let us prove that A is open. Let a € X and U an open set such that
a € U. We prove that there exists an open set V' of Ay (X) such that Ay (a) € V and
V C Ay (U). Indeed, by the hypothesis (H), there exists o : X — [0, 1] such that o €
Y,o(a)=1and o(y) =0forally € X \ U. Set W := {y* € Y*/y*(0) :=5(y*) > 0}.
We have that W = 671(]0, +00[) and so it is a weak-star open subset of Y*, moreover
Ay (a) e W. We set V :=W N Ay (X).

U

*

The set Ay (X )w C By~ is a weak-star compact subset of Y* by the Banach-Alaoglu

%

theorem. Note that when we take ¥ = Cy(X), then the set Ay (X)" coincides (up to
a homeomorphism) with the Stone-Cech compactification SX.

For all p € Y and all @ € Y™, we will use, according to the situations, the following
equivalent notations

(@, ¢) = Q(p) = &(Q).

Now, given a bounded from below function f defined on X, we denote by F(f) the
Fenchel transform of the conjugacy f* defined on the dual space Y* by :

F(HQ) = (f)(Q) = Zlelg{@,@ - (p)}, vQeY™

We know that F(f) is convex and weak-star lower semicontinuous as Fenchel trans-
form of the convex 1-Lipschitz function f* on Y ([Proposition 1., [1]]).

In the following lemma, we study some properties of the operator F which will be
used in the next sections.



Lemma 1. Let X be a normal Hausdorff space and (Y, ||.]|) is a Banach space included
in Cp(X) such that ||.| > ||.|lec and that the pair (X,Y) satisfies (H). Let f : X —
RU{+00} be a bounded from below and lower semicontinuous fonction with dom(f) # 0.
Then, the following assertions holds.

(1) The function F(f) is conver weak-star semicontinuous. We have dom(F(f)) C
" (Ay (X)) and f = F(f) o Ay. In other words, the following diagram commutes

Ay oy

S o

R U {+o0}

X

(2) When f = ¢, where ¢ G*R, we have F(c) = ¢ + igwr (Ay(X)),*where lesv* (Ay (X))
is the indicator function of €06 (Ay (X)) which is equal to 0 on co™ (Ay (X)) and 400
otherwise.

(3) For all ¢ € Y we have F(f —¢) = F(f) — ¢. In particular we have F(p) =
@ + Z‘@w*(Ay(X)) fOT a,” %) I~ Y

(4) We have the conservation of the infinimums :

inf f(z)= min F(f)(Q = min  F(f)Q).

oeX Qeny (X)" Qeeo"” (Ay (X))

(5) If (zn)n is a sequence that minimize the function f on X, then (04, )n is a
sequence that minimize F(f) on Y*.

Proof. (1) From the definition of f* we have f*(¢) < sup,cx ¢(z) — infrex f(x) =
sup,ex ¢(z) + f*(0) for all ¢ € Y. Thus, for all ¢ € Y and all Q € (Y')* we have

Q(p) — f*(p) > Q(p) — sup p(x) — f*(0).

zeX

Let Q ¢ @ (Ay (X)), by the Hahn-Banach theorem, there exists ¢y € Y such that
Qo) = 40(Q) > 1 = supgesur(a, (x)) Po(S). On the other hand, since Ay(X) C
" (Ay (X)), we have that SUDgezsv* (Ay (X)) ©o(S) > sup,ex wo(x). Thus

Qo) — sup po(z) > Q(po) — sup @o(S) > 0.
zeX Sewv” (Ay (X))

Hence, for all A € RY, we have
A—+00
Q(Apo) — sup Adpg(z) > A <Q(900) - sup (@0)) — +0oo
reX @ (Ay (X))
This implies that F(f)(Q) = +oo whenever Q ¢ @ (Ay(X)). Thus dom(F(f)) C
" (Ay(X)). Now, the fact that f = F(f) o § follows from Theorem 2.

(2) By definition we have :

F@Q) = sup {Q(p) — ()} = sup {Q(so) ~sup so(fﬂ)} e

peY peY rzeX



We deduce from the above equality that F(c)(Q) > ¢ for all @ € (Y)*. On the

other hand, let Q € @% (Ay (X)), there exists a net (Qq)a C conv(Ay (X)) such that
Qa N Q. For each a, there exists (A\$)? ; C Ry and (z§)!; C X suchthat ) | A¥ =1
and Qo = D ;" Afdze. We then have Qa(p) = > i1 Afp(zf) < sup,ex p(@) for all
¢ € Y. By taking the weak-star limit, we obtain that Q(¢ ) < sup,cx p(x) for all
¢ € Y. Thus, using the above formula, we get F(c)(Q) < c for all Q € @ (Ay (X))
and so we have that F(c)(Q) = ¢ for Q € @™ (Ay(X)). From the part (1), since

dom(F(c)) C @ (Ay (X)), we conclude that F(c) = ¢ + i u (Ay (X))

(3) Let ¢ € Y. By definition, we have for all @ € (Y)* that
FU=9(Q) = sup {Qw) = (f—)" (W)}

Also by definition we have (f —¢)*(¢0) = (f)*(p+ ) for all p,9 € Y. By a change of
variable we obtain for all @ € (Y)*:

F(f-9)(Q): = ;gg{czw — o) = (/)*()}

= sup {Q(w) - (f)X(w)} —Q(v)

PeY
= F(NQ)—¢@)
Thus F(f — ) = F(f) — ¢. In particular, when we take f = 0 and by using the part
(2), we obtain that F(p) = ¢ + lsw* (Ay (x)) for all o € Y.

(4) Let us prove that

inf fle)= min F(f)Q)= min  F()Q)
"” QeAy(X)” Qe (Ay (X))

First, note that since F(f) is weak* lower semicontinuous and Ay (X)" and co®” (Ay (X))
are weak™ compact, then F(f) attains its minimum on these sets. Now, since A(X) C

Ay(X)w* C @™ (Ay (X)) then, using the part (1) we have

Cmin F(HQ < min  F(HQ) (1)
Qeca™ (Ay (X)) QeAy (X)”
< Qelgfx)}"(f)(Q) (2)
= inf f(x). (3)

On the other hand, it follows from the definition that F(f)(Q) > —f*(0) := infcx f(x)
for all Q € (Y)*. Thus, inf e gur (a, (x)) F (F)(Q) = infeex f(2). Hence,

inf f(z) = inf F(HQ) = min  F(f)Q).
TeX Qe (Ay (X)) Qe (Ay (X))

Now, since A(X) C Ay(X)w* C @ (Ay (X)), using the part (1), we get the conclu-
sion.



(5) Let (2,)n be a sequence that minimize f on X. Since f(z) = F(f)(d;) for allz € X
and inExeX flx) = MiN g cogu* (A (X)) F(f)(Q) then the seqence (0, )n, minimize F(f)
on o (Ay(X)). O

Now, we prove the following particular case in the compact framework.

Corollary 2. Let (X, 7) be a compact Hausdorff space. Then, there exists a weak™ com-
pact subspace K of some dual Banach space E* and an homeomorphism H : (X,7) —
(K, w"), satisfying the following property: for every proper lower semicontinuous func-
tion f: (X, 7) — RU {400}, there exists a proper convex weak* lower semicontinuous
function I : (co®” (K),w*) — RU {400}, such that the following diagramm commutes

(X, 1) — (K, w")

x lFK

R U {+o0}

and
argmin(f) = Hﬁl(argmin(F‘K)) = H argmin(F) N K).

Proof. By applying Proposition 1 with Y = C'(X), we get that the compact Hausdorff
space (X, 7) is homeomorphic to the weak* compact subset (Ay (X),w*) of (C(X))*.
Thus, the conclusion follows from Lemma 1 by setting K := Ay (X)(= Ay (X )w*) and
F:=F(f).

O

3 Duality and inf-convolution.

In this section, we give the proof of Theorem 3 below. This theorem has a know
analogous in the classical Fenchel duality. In all this section, we assume that X is a
normal Hausdorff space and Y = Cj(X). Thus the hypothesis (H) is satisfied for the
pair (X,Y") by the Urysohn’s lemma (see Exemple 1). Recall that

Ay (f):={reY/p < f}.

Recall that the inf-convolution of two functions k and [ defined on vector space Z is
defined for all z € Z as follows:

kol(z) == if{k(y)+U(z-y)}

Theorem 3. Let X be a normal Hausdorff space and Y = Cy(X). Let f,g: X — R
be bounded from below lower semicontinuous functions (here dom(f) = dom(g) = X ).
Then (f +g)* = f*og* on Cy(X).

The proof of this theorem will be given after some preliminary results.

Lemma 2. Let X be a normal Hausdorff space and Y = Cy(X). Then, we have that
Ay (f +9) = Ay(f) + Ay (g) for all f,g : X — R bounded from below and lower
semicontinuous (here dom(f) = dom(g) = X ).



Proof. Clearly we have that Ay (f) + Ay (g9) C Ay (f + g). Let us prove the converse.
Indeed, let ¢ € Ay (f + g). Then we have ¢ < f + g. In other words, p — g < f, with
@ — g uper semicontinuous and f lower semicontinuous. Since X is a normal space,
using the insertion theorem |Theorem 1. [5]], there exists a continuous function v on
X such that ¢ — g < ¢ < f. Thus, we have ) < fie. ¢ € Ay(f) and ¢ — 1 < g i.e.
¢ — P € Ay(g) with o =1 + (¢ — ). Hence p € Ay (f) + Ay (g).

Lemma 3. Let X be a normal Hausdorff space and Y = Cy(X). Let f : X —
R U {+o0} be a bounded from below lower semicontinuous function with dom(f) #
Then, for all £ € Cy(X), we have that

A €)= inf ©*(E).

pEAyY (f)

O

Proof. Tt suffices to shows that f*(0) = inf,ca, () 9™ (0), since f*(§) = (f —£)*(0)
and Ay (f —§&) = Ay (f) — &, for all £ € Cp(X). From the part (4) in Lemma 1, we
have that ¢ (0) := —infrex @(2) = —mingur(a, (x)) F(©)(Q), for all ¢ € Cy(X).
Thanks to the part (3) of Lemma 1, we get that ¢ (0) = —mingezur (o, (x)) $(Q), for
all ¢ € Cy(X). Thus, we have that

inf *(0) = inf (— min D
soeAy(f)SD ©) soeAy(f)( Qeﬁw*(Ay(X))gp(Q))
— — s min $(Q). (4)

*

peAy (f) QEY” (Ay (X))

Applying the minimax theorem [Corollary 2., [6]] to (-,-) : @* (Ay (X)) x Ay (f) — R
defined by (Q,¢) := $(Q) = Q(¢), we have that

sup min P(Q) = min sup  ¢(Q).
pEAY (f) QET™™ (Ay (X)) Qe (Ay (X)) peAy (f)

Hence, using (4) we obtain that

inf ¢*(0)=— min sup  ¢(Q). (5)
pedy (f) QT (Ay (X)) peAy (f)

It is easy to see that Q(1) = 1 for all Q € @™ (Ay(X)). Let ¢y be the constant
function defined by ¢g(z) := infx f for all x € X. We have that ¢y < f and
80, SUPgea, (f) P(Q) > Qpo) = ¢o for all Q € ¥ (Ay(X)). This implies that
mMin G ccsur (A (x)) SWPpeAy (f) $(Q) > ¢o. Thus, from (5) we obtain that inf e 4, () ™ (0) <
—po = —infyex f := £*(0). Now, to see the converse, since A(X) C @ (Ay (X)), we
have that

min sup ¢(Q) < inf sup ¢(z) < inf f(x).
Qeco™ (Ay (X)) pedy (f) TeX pedy(f) rex

Since infyex f(x) := —f*(0), using (5), we have that f*(0) < inf e, () ©*(0). O
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Proof of Theorem 3. 1t is easy to see that for all v, 9 € Cy(X), we have

FX@W)+ 9" (e =) > (f +9)" (o).

Taking the infinimum over ¢ € Cy(X), we get that (f 4+ ¢)* < f* o g*. It is easy to
verify the following Claim.
Claim. If @, € Cp(X), then (¢ +9)* = ¢* 0™ on Cy(X).

Now, let 0,& € Cp(X). From the Lemma 3 we have that
@ +g"(0-¢& = inf o€+ inf P(0-¢)

PEAY(f) YeAy (g)

{7 () + v (0 - &)}

inf
(pp)EAY (f)x Ay (9)

By taking the infinimum over £ in the above formula, we obtain

Xog*(0) = inf o™ (6).
f 9°() (‘va)eAY(f)XAY(g){SD VRO

Using the Claim. we have

[Fog™(0) = inf {(e+v¥)*(0)}.

(p)EAY (f)x Ay (9)

From Lemma 2 we have

“ogX(0) = inf *(0).
Plogie) = it u(0)

Using again Lemma 3, we get that f* ¢ ¢*(0) = (f +¢)*(0) for all 0 € Cy(X). O

4 Proof of Theorem 1.

For the proof of Theorem 1, we also need the following propositions.

Proposition 2. Let X be a topological space, Y = Cy(X) and ) # A C Cy(X). Then, A
is A-set if and only if, there exists a bounded from below lower semicontinuous function
f:X — R such that A=Ay (f):={¢ € Cp(X) /¢ < f}.

Proof. Let us prove the "only if part". Since A is A-set, there exists real numbers
Az € R, for all z € X, such that A = Nyex{p € Cp(X) : ¢(x) < A;}. Let us
set f(x) 1= supyeq¥(z), for all x € X. Thus, we have f(z) < Ay < +oo for all
x € X. It follows that Ay (f) C A, that dom(f) = R and that the function f is
lower semicontinuous as supremum of continuous function. It follows also that f is
bounded from below, since there exists a bounded continuous function ¢ € A such that
—o00 < infx ¢ < ¢ < f. On the other hand, if ¢ € A, then for all x € X we have
¢(r) < supyeq¥(z) := f(z). This shows that ¢ € Ay(f) and so that A C Ay (f).
Hence A = Ay (f). The "if part" is clear.

O
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Proposition 3. Let X be a normal Hausdorff space and Y = Cy(X). Let f : X —
R U {400} be a bounded from below lower semicontinuous function with dom(f) # 0.
Then, for all Q € @ (Ay (X)), we have that

FHQ) = (f)(Q)= sup (Q,9):=04,(5)(Q)

pEAY (f)
Proof. From Lemma 3, we have that f*(§) = inf,ca, (5 9™ (), for all £ € Cp(X).
So, by applying the Fenchel conjugacy to f*, we get (f*)*(Q) = supy,ea, () (¢™)*(Q)
for all @ € (Cp(X))*. Hence, F(f)(Q) = sup,ca, (5) F($)(Q) for all Q € (Cp(X))".
Using the part (3) of Lemma 1, we obtain that F(f)(Q) = sup,ca, (5)(Q; ), for all
Q €@V (Ay(X)).
U

Proof of Theorem 1. First, we define T as follows: for all f € SCI(X),
T(f) = ]:(f)@w*(AY(X)),

the restriction of F(f) to co® (Ay(X)). From Proposition 3, we have that 7(f) €
I'(@"" (A(X))) for all f € SCI(X). Let us prove that 7 : SCI(X) — I'(co® (A(X)))
is a bijective map. Indeed, using the part (1) of Lemma 1, we get that 7 is one to
one. To see that 7 is onto, let g € I'(€6% (A(X))), there exists a A-set A such that
g = (JA)@M( A(X))" Using Proposition 2, there exist a bounded from below lower
semicontinuous function f : X — R such that A = Ay (f) := {¢ € Cp(X) /¢ < f}.
Thus, by using Proposition 3, we get that ¢ = 7(f) i.e. T is onto. Hence, 7 is a
bijective map. Now, we prove that for all f,g € SCI(X) and all o, 8 € RT, we have

T(af + Bg) = T (f) + BT (9)-

Indeed, let o € RT. If o = 0, then from the part (2) of Lemma 1, we have that
T(0) = F(0) =0 on c0" (Ay(X)). If ar # 0, it is easy to see that (af)* () = af*(£)
for all f € SCI(X). Thus, ((af)*)* = a(f*)* which implies that T (af) = a7 (f) for
all f € SCI(X). On the other hand, if f,g € SCI(X), then by applying Theorem 3,
we get that (f + ¢)* = f* ¢ ¢g*. Hence by the properties of the Fenchel conjugacy,
(f+9)) = og")" = (f*)+ (¢°)*. In other words, we have that T(f + g) =
T(f) + T(g). Thus, T(af + Bg) = oT(f) + BT (g), for all f,g € SCI(X) and all
a, 3 € R*. Tt follows from this formula that the set I'(€6” (A(X))) is a convex cone
and that 7 is an isomorphism of convex cone.

The parts (1), (3) and (4) of the theorem, follows repectively from the parts (1), (3)
and (4) of Lemma 1. Now, we prove the part (2) of the theorem. Let f,g € SCI(X).
If f < g, then we see easily from the definition that ¢* < f*. Also from the definition
of the Fenchel conjugacy we get that (f*)* < (¢*)* which implies that T(f) < T (g).
Now, suppose that T(f) < T(g). Since dom(F(f)) C @* (Ay (X)) (see the part (1)
of Lemma 1), we also have that F(f) < F(g) i.e. (f*)" < (¢*)*. This implies that
(g%)*™ < (f*)**. Since f* and ¢g* are convex and 1-Lipschitz continuous functions,
using the classical Fenchel-Moreau theorem, we obtain that g* < f*. This implies that
7 < ¢** and so by applying Theorem 2, we get that f < g.

U
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