EXTENSION OF THE BAUER'S MAXIMUM PRINCIPLE FOR COMPACT METRIZABLE SETS - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

EXTENSION OF THE BAUER'S MAXIMUM PRINCIPLE FOR COMPACT METRIZABLE SETS

(1)
1
Mohammed Bachir
  • Function : Author
  • PersonId : 960537

Abstract

Let X be a nonempty convex compact subset of some Haus-dorff locally convex topological vector space S. The well know Bauer's maximum principle stats that every convex upper semi-continuous function from X into R attains its maximum at some extremal point of X. We give some extensions of this result when X is assumed to be compact metrizable. We prove that the set of all convex upper semi-continuous functions attaining there maximum at exactly one extremal point of X is a G δ dense subset of the space of all convex upper semi-continuous functions equipped with a metric compatible with the uniform convergence .
Fichier principal
Vignette du fichier
On_The_Bauer_Max_Prin2.pdf (125.21 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01956983 , version 1 (17-12-2018)

Identifiers

Cite

Mohammed Bachir. EXTENSION OF THE BAUER'S MAXIMUM PRINCIPLE FOR COMPACT METRIZABLE SETS. 2018. ⟨hal-01956983⟩
100 View
181 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More