Metrization of probabilistic metric spaces. Applications to fixed point theory and Arzela-Ascoli type theorem

Mohammed Bachir 1 Bruno Nazaret 2
1 Dynamique et contrôl Optimal
SAMM - Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne)
Abstract : Schweizer, Sklar and Thorp proved in 1960 that a Menger space $(G,D,T)$ under a continuous $t$-norm $T$, induce a natural topology $\tau$ wich is metrizable. We extend this result to any probabilistic metric space $(G,D,\star)$ provided that the triangle function $\star$ is continuous. We prove in this case, that the topological space $(G,\tau)$ is uniformly homeomorphic to a (deterministic) metric space $(G,\sigma_D)$ for some canonical metric $\sigma_D$ on $G$. As applications, we extend the fixed point theorem of Hicks to probabilistic metric spaces which are not necessarily Menger spaces and we prove a probabilistic Arzela-Ascoli type theorem.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

Cited literature [15 references]  Display  Hide  Download

https://hal-paris1.archives-ouvertes.fr/hal-02112322
Contributor : Mohammed Bachir <>
Submitted on : Sunday, July 7, 2019 - 10:57:58 PM
Last modification on : Friday, July 12, 2019 - 9:02:23 PM

Files

Bachir-Nazaret2019v4.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02112322, version 2
  • ARXIV : 1904.12514

Collections

Citation

Mohammed Bachir, Bruno Nazaret. Metrization of probabilistic metric spaces. Applications to fixed point theory and Arzela-Ascoli type theorem. 2019. ⟨hal-02112322v2⟩

Share

Metrics

Record views

39

Files downloads

46