Metrization of probabilistic metric spaces. Applications to fixed point theory and Arzela-Ascoli type theorem - Université Paris 1 Panthéon-Sorbonne Access content directly
Preprints, Working Papers, ... Year :

Metrization of probabilistic metric spaces. Applications to fixed point theory and Arzela-Ascoli type theorem

Mohammed Bachir
  • Function : Author
  • PersonId : 960537

Abstract

Schweizer, Sklar and Thorp proved in 1960 that a Menger space $(G,D,T)$ under a continuous $t$-norm $T$, induce a natural topology $\tau$ wich is metrizable. We extend this result to any probabilistic metric space $(G,D,\star)$ provided that the triangle function $\star$ is continuous. We prove in this case, that the topological space $(G,\tau)$ is uniformly homeomorphic to a (deterministic) metric space $(G,\sigma_D)$ for some canonical metric $\sigma_D$ on $G$. As applications, we extend the fixed point theorem of Hicks to probabilistic metric spaces which are not necessarily Menger spaces and we prove a probabilistic Arzela-Ascoli type theorem.
Fichier principal
Vignette du fichier
Bachir-Nazaret2019v4.pdf (233.04 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02112322 , version 1 (26-04-2019)
hal-02112322 , version 2 (07-07-2019)

Identifiers

Cite

Mohammed Bachir, Bruno Nazaret. Metrization of probabilistic metric spaces. Applications to fixed point theory and Arzela-Ascoli type theorem. 2019. ⟨hal-02112322v2⟩
203 View
149 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More