C. D. Aliprantis and K. C. Border, Infinite dimensional analysis. A hitchhiker's guide, 2006.

M. Bachir, On the Krein-Milman-Ky Fan theorem for convex compact metrizable sets, Illinois J. Math, vol.62, pp.1-24, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01576780

M. Bachir, A non convexe analogue to Fenchel duality, J. Funct. Anal, vol.181, pp.300-312, 2001.

H. Bauer, Minimalstellen von Funktionen und Extremalpunkte II, Arch der Math, vol.11, pp.200-205, 1960.

B. Cascales and J. Orihuela, On Compactness in Locally Convex Spaces, Math. Z, vol.195, pp.365-381, 1987.

G. Choquet and P. Meyer, Existence et unicité des representations intégrals dans les convexes compacts quelconques, vol.13, pp.139-154, 1963.

R. Deville, G. Godefroy, and V. Zizler, A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions, J. Funct. Anal, vol.111, pp.197-212, 1993.

R. Deville and J. P. Revalski, Porosity of ill-posed problems, Proc. Amer. Math. Soc, vol.128, pp.1117-1124, 2000.

K. Fan, On the Krein-Milman theorem, Proceedings of symposia in pure mathematics, vol.7, pp.211-219, 1963.

R. Greene and S. Krantz, Function Theory of One Complex Variable, Graduate Studies in Mathematics, vol.40, 2006.

M. W. Grossman, Relations of a paper of Ky Fan to a theorem of Krein-Milman type, Math. Z, vol.90, pp.212-214, 1965.

J. Kelley, General Topology, vol.27, 1955.

J. Lukes, I. Netuka, and J. Vesely, Choquet's theory and the Dirichlet problem, Expo. Math, vol.20, pp.229-254, 2002.

B. D. Khanh, Sur la ?-Convexité de Ky Fan, J. Math. Anal. Appl, vol.20, pp.188-193, 1967.

M. Krein and D. Milman, On extreme points of regular convex sets, Studia Math, vol.9, pp.133-138, 1940.

R. R. Phelps, Lectures on Choquet's theorem, vol.1757, 1997.

W. Rudin, Functional analysis, 1991.

B. Mohammed,

S. Laboratoire, Université Paris 1 Panthéon-Sorbonne Centre PMF, 90 rue Tolbiac, F-75634 Paris cedex 13

S. Micinn and E. Eu), Research supported by the grants: CMM-CONICYT AFB170001, vol.851