Optimal Anchoring of a Urea-based Foldamer Inhibitor of ASF1 Histone Chaperone Through Backbone Plasticity - Université Paris 1 Panthéon-Sorbonne Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2020

Optimal Anchoring of a Urea-based Foldamer Inhibitor of ASF1 Histone Chaperone Through Backbone Plasticity

Résumé

Sequence-specific oligomers with predictable folding patterns, i.e. foldamers provide new opportunities to mimic α-helical peptides and design inhibitors of protein-protein interactions. One major hurdle of this strategy is to retain the correct orientation of key side chains involved in protein surface recognition. Here, we show that the structural plasticity of a foldamer backbone may significantly contribute to the required spatial adjustment for optimal interaction with the protein surface. By using oligoureas as α-helix mimics, we designed a foldamer/peptide hybrid inhibitor of histone chaperone ASF1, a key regulator of chromatin dynamics. The crystal structure of its complex with ASF1 reveals a striking plasticity of the urea backbone, which adapts to the ASF1 surface to maintain the same binding interface. One additional benefit of generating ASF1 ligands with non-peptide oligourea segments is the resistance to proteolysis in human plasma which was highly improved compared to the cognate α-helical peptide.

Fichier principal
Vignette du fichier
Mbianda Bakail ChemRxiv_full_OK.pdf (4.65 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03041508 , version 1 (04-12-2020)

Identifiants

Citer

Johanne Mbianda, May Bakail, Christophe André, Gwenaëlle Moal, Marie Perrin, et al.. Optimal Anchoring of a Urea-based Foldamer Inhibitor of ASF1 Histone Chaperone Through Backbone Plasticity. 2020. ⟨hal-03041508⟩
147 Consultations
34 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More