Games on lattices, multichoice games and the Shapley value: a new approach

Abstract : Multichoice games have been introduced by Hsiao and Raghavan as a generalization of classical cooperative games. An important notion in cooperative game theory is the core of the game, as it contains the rational imputations for players. We propose two definitions for the core of a multichoice game, the first one is called the precore and is a direct generalization of the classical definition. We show that the precore coincides with the definition proposed by Faigle, and that it contains unbounded imputations, which makes its application questionable. A second definition is proposed, imposing normalization at each level, causing the core to be a convex closed set. We study its properties, introducing balancedness and marginal worth vectors, and defining the Weber set and the pre-Weber set. We show that the classical properties of inclusion of the (pre)core into the (pre)-Weber set as well as their equality remain valid. A last section makes a comparison with the core defined by van den Nouweland et al.
Type de document :
Article dans une revue
Mathematical Methods of Operations Research, Springer Verlag, 2007, 65 (1), pp.153-167. 〈10.1007/s00186-006-0109-x〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://halshs.archives-ouvertes.fr/halshs-00178916
Contributeur : Michel Grabisch <>
Soumis le : vendredi 12 octobre 2007 - 14:40:56
Dernière modification le : mardi 27 mars 2018 - 11:48:05
Document(s) archivé(s) le : dimanche 11 avril 2010 - 22:54:33

Fichier

mmor05.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Michel Grabisch, Fabien Lange. Games on lattices, multichoice games and the Shapley value: a new approach. Mathematical Methods of Operations Research, Springer Verlag, 2007, 65 (1), pp.153-167. 〈10.1007/s00186-006-0109-x〉. 〈halshs-00178916〉

Partager

Métriques

Consultations de la notice

348

Téléchargements de fichiers

319