A study of the k-additive core of capacities through achievable
families

Abstract : We investigate in this paper about the set of $k$-additive capacities dominating
a given capacity, which we call the $k$-additive core. We study its structure
through achievable families, which play the role of maximal chains in the
classical case ($k=1$), and show that associated capacities are element
(possibly a vertex) of the $k$-additive core when the capacity is
$(k+1)$-monotone. The problem of finding all vertices of the $k$-additive core
is still an open question.
Type de document :
Communication dans un congrès
SCIS-ISIS 2006, 3nd Int. Conf. on Soft Computing and Intelligent Systems and 7th Int. Symp. on Advanced Intelligent Systems, Sep 2006, Yokohama, Japan. no pagination (CD), 2006
Liste complète des métadonnées

https://halshs.archives-ouvertes.fr/halshs-00179839
Contributeur : Michel Grabisch <>
Soumis le : mardi 16 octobre 2007 - 17:51:39
Dernière modification le : mardi 27 mars 2018 - 11:48:05

Identifiants

  • HAL Id : halshs-00179839, version 1

Collections

Citation

Michel Grabisch, Pedro Miranda. A study of the k-additive core of capacities through achievable
families. SCIS-ISIS 2006, 3nd Int. Conf. on Soft Computing and Intelligent Systems and 7th Int. Symp. on Advanced Intelligent Systems, Sep 2006, Yokohama, Japan. no pagination (CD), 2006. 〈halshs-00179839〉

Partager

Métriques

Consultations de la notice

190