Aggregation on bipolar scales

Abstract : The paper addresses the problem of extending aggregation operators typically defined on $[0,1]$ to the symmetric interval $[-1,1]$, where the ``0'' value plays a particular role (neutral value). We distinguish the cases where aggregation operators are associative or not. In the former case, the ``0'' value may play the role of neutral or absorbant element, leading to pseudo-addition and pseudo-multiplication. We address also in this category the special case of minimum and maximum defined on some finite ordinal scale. In the latter case, we find that a general class of extended operators can be defined using an interpolation approach, supposing the value of the aggregation to be known for ternary vectors.
Type de document :
Chapitre d'ouvrage
Harrie C. M. de Swart, Ewa Orlowska, Gunther Schmidt, Marc Roubens. Theory and Applications of Relational Structures as Knowledge Instruments II, Springer, pp.355-371, 2006, Lecture Notes in Computer Science
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://halshs.archives-ouvertes.fr/halshs-00187155
Contributeur : Michel Grabisch <>
Soumis le : mardi 13 novembre 2007 - 17:15:19
Dernière modification le : mardi 27 mars 2018 - 11:48:05
Document(s) archivé(s) le : lundi 12 avril 2010 - 02:05:27

Fichier

tarski06.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : halshs-00187155, version 1

Collections

Citation

Michel Grabisch. Aggregation on bipolar scales. Harrie C. M. de Swart, Ewa Orlowska, Gunther Schmidt, Marc Roubens. Theory and Applications of Relational Structures as Knowledge Instruments II, Springer, pp.355-371, 2006, Lecture Notes in Computer Science. 〈halshs-00187155〉

Partager

Métriques

Consultations de la notice

235

Téléchargements de fichiers

182