Pricing bivariate option under GARCH processes with time-varying copula

Abstract : This paper develops a method for pricing bivariate contingent claims under General Autoregressive Conditionally Heteroskedastic (GARCH) process. As the association between the underlying assets may vary over time, the dynamic copula with time-varying parameter offers a better alternative to any static model for dependence structure and even to the dynamic copula model determined by dynamic dependence measure. Therefore, the proposed method proves to play an important role in pricing bivariate options. The approach is illustrated with one type of better-of-two-markets claims: call option on the better performer of Shanghai and Shenzhen Stock Composite Indexes. Results show that the option prices obtained by the time-varying copula model differ substantially from the prices implied by the static copula model and even the dynamic copula model derived from the dynamic dependence measure. Moreover, the empirical work displays the advantages of the suggested method.
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger
Contributeur : Dominique Guégan <>
Soumis le : mercredi 15 avril 2009 - 18:41:47
Dernière modification le : jeudi 4 octobre 2018 - 18:28:03
Document(s) archivé(s) le : vendredi 28 septembre 2012 - 15:40:25


Fichiers produits par l'(les) auteur(s)




Jing Zhang, Dominique Guegan. Pricing bivariate option under GARCH processes with time-varying copula. Insurance: Mathematics and Economics, Elsevier, 2008, 42 (3), pp.1095-1103. ⟨10.1016/j.insmatheco.2008.02.003⟩. ⟨halshs-00286054⟩



Consultations de la notice


Téléchargements de fichiers