How to score alternatives when criteria are scored on an ordinal scale

Abstract : We address in this paper the problem of scoring alternatives when they are evaluated with respect to several criteria on a finite ordinal scale $E$. We show that in general, the ordinal scale $E$ has to be refined or shrunk in order to be able to represent the preference of the decision maker by an aggregation operator belonging to the family of mean operators. The paper recalls previous theoretical results of the author giving necessary and sufficient conditions for a representation of preferences, and then focusses on describing practical algorithms and examples.
Type de document :
Article dans une revue
Journal of Multi-Criteria Decision Analysis, Wiley, 2008, 15 (1-2), pp.31-44. 〈10.1002/mcda.422〉
Liste complète des métadonnées

https://halshs.archives-ouvertes.fr/halshs-00340381
Contributeur : Michel Grabisch <>
Soumis le : jeudi 20 novembre 2008 - 16:55:50
Dernière modification le : mardi 27 mars 2018 - 11:48:05
Document(s) archivé(s) le : lundi 7 juin 2010 - 21:47:54

Fichier

jmcda06.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Michel Grabisch. How to score alternatives when criteria are scored on an ordinal scale. Journal of Multi-Criteria Decision Analysis, Wiley, 2008, 15 (1-2), pp.31-44. 〈10.1002/mcda.422〉. 〈halshs-00340381〉

Partager

Métriques

Consultations de la notice

376

Téléchargements de fichiers

176