K. Wallis, Forecasting with an econometric model: The ???ragged edge??? problem, Journal of Forecasting, vol.3, issue.1, pp.1-13, 1986.
DOI : 10.1002/for.3980050102

R. Ghysels, P. Santa-clara, and R. Valkanov, There is a risk-return trade-off after all, Journal of Financial Economics, vol.76, issue.3, pp.509-548, 2005.
DOI : 10.1016/j.jfineco.2004.03.008

M. Marcellino, J. Stock, and M. Watson, Macroeconomic forecasting in the Euro area: Country specific versus area-wide information, European Economic Review, vol.47, issue.1, 2001.
DOI : 10.1016/S0014-2921(02)00206-4

B. Bernanke and J. Boivin, Monetary policy in a data-rich environment, Journal of Monetary Economics, vol.50, issue.3, pp.525-546, 2003.
DOI : 10.1016/S0304-3932(03)00024-2

M. Forni, D. Giannone, M. Lippi, and L. Reichlin, OPENING THE BLACK BOX: STRUCTURAL FACTOR MODELS WITH LARGE CROSS SECTIONS, Econometric Theory, vol.127, issue.05, 2005.
DOI : 10.1162/rest.88.3.445

J. Boivin and S. Ng, Are more data always better for factor analysis?, Journal of Econometrics, vol.132, issue.1, pp.169-194, 2006.
DOI : 10.1016/j.jeconom.2005.01.027

A. Agostino, D. Giannone, and P. Surico, )predictability and macroeconomic stability. European Central Bank WP, p.16, 2006.

M. Forni, M. Hallin, M. Lippi, and L. Reichlin, The Generalized Dynamic-Factor Model: Identification and Estimation, Review of Economics and Statistics, vol.65, issue.4, pp.540-554, 2000.
DOI : 10.1007/BF01205493

J. Stock and M. Watson, Macroeconomic Forecasting Using Diffusion Indexes, Journal of Business & Economic Statistics, vol.20, issue.2, pp.147-162, 2002.
DOI : 10.1198/073500102317351921

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Doz, D. Giannone, and L. Reichlin, A quasi maximum likelihood approach for large approximate dynamic factor models. CEPR Discussion Paper, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00638440

C. Doz, D. Giannone, and L. Reichlin, A two-step estimator for large approximate dynamic factor models based on Kalman filtering. CEPR Discussion Paper, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00638009

G. Kapetanios and M. Marcellino, A parametric estimation method for dynamic factors models of large dimensions, IGIER WP, vol.305, 2006.

D. Giannone, L. Reichlin, and D. Small, Nowcasting: The real-time informational content of macroeconomic data, Journal of Monetary Economics, vol.55, issue.4, pp.665-676, 2008.
DOI : 10.1016/j.jmoneco.2008.05.010

K. Barhoumi, S. Benk, R. Cristadoro, A. Den-feijer, A. Jakaitiene et al., Short term forecasting of GDP using large monthly data sets: a pseudo real-time forecast evaluation exercise, 2008.

J. Kitchen and R. Monaco, Real-time forecasting in practice: The US treasury staff's real time GDP forecast system, Business Economics, pp.10-19, 2003.

G. Rünstler and F. Sedillot, Short-term estimates of Euro area real GDP by means of monthly data. European Central Bank WP, 2003.

A. Baffigi, R. Golinelli, and G. Parigi, Bridge models to forecast the euro area GDP, International Journal of Forecasting, vol.20, issue.3, pp.447-460, 2004.
DOI : 10.1016/S0169-2070(03)00067-0

M. Diron, Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data, Journal of Forecasting, vol.84, issue.3, pp.371-390, 2008.
DOI : 10.1002/for.1067

E. Angelini, G. Camba-mendez, D. Giannone, L. Reichlin, and G. Runstler, Short-term forecasts of euro area GDP growth, The Econometrics Journal, vol.1, issue.1, p.17, 2008.
DOI : 10.1111/j.1368-423X.2010.00328.x

C. Schumacher and J. Breitung, Real-time forecasting of GDP based on a large factor model with monthly and quarterly data, International Journal of Forecasting, vol.24, pp.368-398, 2008.

M. Marcellino, C. Schumacher, G. German, . Cepr, and . Wp, Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP, SSRN Electronic Journal, vol.6708, 2008.
DOI : 10.2139/ssrn.1094648

S. Yakowitz, NEAREST-NEIGHBOUR METHODS FOR TIME SERIES ANALYSIS, Journal of Time Series Analysis, vol.21, issue.2, pp.235-247, 1987.
DOI : 10.2307/2288075

F. Girosi and G. Anzelotti, Rates of convergence for radial basis functions and neural networks Artificial Neural Networks for Speech and Vision, pp.97-114, 1993.

B. Finkenstadt and P. Kuhbier, Forecasting nonlinear economic time series: A simple test to accompany the nearest neighbor approach, Empirical Economics, vol.37, issue.2, pp.243-263, 1995.
DOI : 10.1007/BF01205437

B. Silverman, Density Estimation for Statistics and Data Analysis. Chapmann and Hall, 1952.

M. Wand and M. Jones, Kernel Smoothing, 1995.
DOI : 10.1007/978-1-4899-4493-1

L. Devroye, L. Györfi, and G. Lugosi, Probabilistic Theory of Pattern Recognition, 1996.
DOI : 10.1007/978-1-4612-0711-5

D. Guégan, Les Chaos en Finance: Approche Statistique, Economica Série Statistique Mathématique et, 2003.

W. Hardle, M. Muller, S. Sperlich, and A. Werwatz, Non-Parametric and Semi-Parametric Models, 2004.

C. European and . Bank, Short-term forecasts of economic activity in the euro area, Monthly Bulletin, 2008.