Predicting chaos with Lyapunov exponents: zero plays no role in forecasting chaotic systems

Abstract : We propose a nouvel methodology for forecasting chaotic systems which uses information on local Lyapunov exponents (LLEs) to improve upon existing predictors by correcting for their inevitable bias. Using simulations of the Rössler, Lorenz and Chua attractors, we find that accuracy gains can be substantial. Also, we show that the candidate selection problem identified in Guégan and Leroux (2009a,b) can be solved irrespective of the value of LLEs. An important corrolary follows : the focal value of zero, which traditionally distinguishes order from chaos, plays no role whatsoever when forecasting deterministic systems.
Liste complète des métadonnées

https://halshs.archives-ouvertes.fr/halshs-00644500
Contributeur : Dominique Guégan <>
Soumis le : jeudi 24 novembre 2011 - 15:11:40
Dernière modification le : mardi 17 septembre 2019 - 16:20:07

Identifiants

  • HAL Id : halshs-00644500, version 1

Collections

Citation

Dominique Guegan, Justin Leroux. Predicting chaos with Lyapunov exponents: zero plays no role in forecasting chaotic systems. E. Tielo-Cuantle. Chaotic Systems, InTech Publishers, 25-38 (chapitre 2), 2011. ⟨halshs-00644500⟩

Partager

Métriques

Consultations de la notice

259