Multicoalitional solutions

Abstract : The paper proposes a new concept of solution for TU games, called multicoalitional solution, which makes sense in the context of production games, that is, where $v(S)$ is the production or income per unit of time. By contrast to classical solutions where elements of the solution are payoff vectors, multicoalitional solutions give in addition an allocation time to each coalition, which permits to realize the payoff vector. We give two instances of such solutions, called the d-multicoalitional core and the c-multicoalitional core, and both arise as the strong Nash equilibria of two strategic games, where in the first utility per active unit of time is maximized, while in the second it is the utility per total unit of time. We show that the d-core (or aspiration core) of Benett, and the c-core of Guesnerie and Oddou are strongly related to the d-multicoalitional and c-multicoalitional cores, respectively, and that the latter ones can be seen as an implementation of the former ones in a noncooperative framework.
Type de document :
Article dans une revue
Journal of Mathematical Economics, Elsevier, 2016, 64, pp. 1-10
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger
Contributeur : Nelly Wirth <>
Soumis le : mardi 28 février 2017 - 16:41:28
Dernière modification le : mercredi 31 octobre 2018 - 12:24:13
Document(s) archivé(s) le : lundi 29 mai 2017 - 16:22:25


Fichiers produits par l'(les) auteur(s)


  • HAL Id : halshs-01293785, version 1


Stéphane Gonzalez, Michel Grabisch. Multicoalitional solutions. Journal of Mathematical Economics, Elsevier, 2016, 64, pp. 1-10. 〈halshs-01293785〉



Consultations de la notice


Téléchargements de fichiers