Credit Risk Analysis using Machine and Deep Learning models

Abstract : Due to the hyper technology associated to Big Data, data availability and computing power, most banks or lending financial institutions are renewing their business models. Credit risk predictions, monitoring, model reliability and effective loan processing are key to decision making and transparency. In this work, we build binary classifiers based on machine and deep learning models on real data in predicting loan default probability. The top 10 important features from these models are selected and then used in the modelling process to test the stability of binary classifiers by comparing performance on separate data. We observe that tree-based models are more stable than models based on multilayer artificial neural networks. This opens several questions relative to the intensive used of deep learning systems in the enterprises.
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://halshs.archives-ouvertes.fr/halshs-01719983
Contributeur : Lucie Label <>
Soumis le : mercredi 28 février 2018 - 16:43:28
Dernière modification le : mardi 6 août 2019 - 16:08:04
Document(s) archivé(s) le : lundi 28 mai 2018 - 14:17:18

Fichier

18003.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : halshs-01719983, version 1

Collections

Citation

Peter Addo, Dominique Guegan, Bertrand Hassani. Credit Risk Analysis using Machine and Deep Learning models. 2018. ⟨halshs-01719983⟩

Partager

Métriques

Consultations de la notice

419

Téléchargements de fichiers

7450