Accéder directement au contenu Accéder directement à la navigation
Thèse

Three essays on the informational efficiency of financial markets through the use of Big Data Analytics

Résumé : L’augmentation massive du volume de données générées chaque jour par les individus sur Internet offre aux chercheurs la possibilité d’aborder la question de la prédictibilité des marchés financiers sous un nouvel angle. Sans prétendre apporter une réponse définitive au débat entre les partisans de l’efficience des marchés et les chercheurs en finance comportementale, cette thèse vise à améliorer notre compréhension du processus de formation des prix sur les marchés financiers grâce à une approche Big Data. Plus précisément, cette thèse porte sur (1) la mesure du sentiment des investisseurs à fréquence intra-journalière, et le lien entre le sentiment des investisseurs et les rendements agrégés du marché,(2) la mesure de l’attention des investisseurs aux informations économiques et financières en temps réel, et la relation entre l’attention des investisseurs et la dynamique des prix des actions des sociétés à forte capitalisation, et enfin, (3) la détection des comportements suspicieux pouvant amoindrir le rôle informationnel des marchés financiers, et le lien entre le volume d’activité sur les réseaux sociaux et le prix des actions des entreprises de petite capitalisation. Le premier essai propose une méthodologie permettant de construire un nouvel indicateur du sentiment des investisseurs en analysant le contenu des messages publiés sur le réseau social Stock-Twits. En examinant les caractéristiques propres à chaque utilisateur (niveau d’expérience, approche d’investissement, période de détention), cet essai fournit des preuves empiriques montrant que le comportement des investisseurs naïfs, sujets à des périodes d’excès d’optimisme ou de pessimisme, a un impact sur la valorisation du marché action, et ce en accord avec les théories de la finance comportementale. Le deuxième essai propose une méthodologie permettant de mesurer l’attention des investisseurs aux informations en temps réel, en combinant les données des médias traditionnels avec le contenu des messages envoyés par une liste d’experts sur la plateforme Twitter. Cet essai démontre que lorsqu’une information attire l’attention des investisseurs, les mouvements de marchés sont caractérisés par une forte hausse des volumes échangés, une hausse de la volatilité et des sauts de prix. Cet essai démontre également qu’il n’y a pas de fuite d’information significative lorsque les sources d’informations sont combinées pour corriger un potentiel problème d’horodatage. Le troisième essai étudie le risque de manipulation informationnelle en examinant un nouveau jeu de données de messages publiés sur Twitter à propos des entreprises de petite capitalisation. Cet essai propose une nouvelle méthodologie permettant d’identifier les comportements anormaux de manière automatisée en analysant les interactions entre les utilisateurs. Étant donné le grand nombre de recommandations suspicieuses d’achat envoyées par certains groupes d’utilisateurs, l’analyse empirique et les conclusions de cet essai soulignent la nécessité d’un plus grand contrôle par les régulateurs de l’information publiée sur les réseaux sociaux ainsi que l’utilité d’une meilleure éducation des investisseurs individuels.
Type de document :
Thèse
Liste complète des métadonnées

Littérature citée [178 références]  Voir  Masquer  Télécharger

https://tel.archives-ouvertes.fr/tel-01988570
Contributeur : Abes Star :  Contact
Soumis le : lundi 21 janvier 2019 - 18:17:18
Dernière modification le : dimanche 19 janvier 2020 - 18:38:37

Fichier

RENAULT.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01988570, version 1

Collections

Citation

Thomas Renault. Three essays on the informational efficiency of financial markets through the use of Big Data Analytics. Business administration. Université Panthéon-Sorbonne - Paris I, 2017. English. ⟨NNT : 2017PA01E009⟩. ⟨tel-01988570⟩

Partager

Métriques

Consultations de la notice

212

Téléchargements de fichiers

285