A Banach-Stone type Theorem for invariant metric groups

Mohammed Bachir 1
1 Equations d'evolution
SAMM - Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne)
Abstract : Given an invariant metric group $(X,d)$, we prove that the set $Lip^1_+(X)$ of all nonnegative and $1$-Lipschitz maps on $(X,d)$ endowed with the inf-convolution structure is a monoid which completely determine the group completion of $(X,d)$. This gives a Banach-Stone type theorem for the inf-convolution structure in the group framework.
Type de document :
Article dans une revue
Topology and its Applications, Elsevier, 2016
Liste complète des métadonnées

https://hal-paris1.archives-ouvertes.fr/hal-01333611
Contributeur : Mohammed Bachir <>
Soumis le : vendredi 17 juin 2016 - 19:16:48
Dernière modification le : lundi 27 novembre 2017 - 14:14:02

Identifiants

  • HAL Id : hal-01333611, version 1

Collections

Citation

Mohammed Bachir. A Banach-Stone type Theorem for invariant metric groups. Topology and its Applications, Elsevier, 2016. 〈hal-01333611〉

Partager

Métriques

Consultations de la notice

575